On the System of Difference Equations xn = xn−2yn−3 yn−1(an+bnxn−2yn−3), yn = yn−2xn−3 xn−1(αn+βnyn−2xn−3)

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

In this paper, we show that the system of difference equations \begin{equation*}x_{n}=\frac{x_{n-2}y_{n-3}}{y_{n-1}\left(a_{n}+b_{n}x_{n-2}y_{n-3} \right) },\y_{n}=\frac{y_{n-2}x_{n-3}}{x_{n-1}\left(\alpha_{n}+\beta_{n}y_{n-2}x_{n-3} \right) }, \ n\in\mathbb{N}_{0},\end{equation*}%where the sequences $\forall n\in\mathbb{N}_{0}$, $\left( a_{n}\right) ,\left( b_{n}\right) , \left( \alpha_{n}\right) , \left( \beta_{n}\right) $ and the initial values $x_{-j}, y_{-j}, j\in\{1,2,3\}$ are non-zero real numbers, can be solvedin the closed form. For the case when all the sequences $\left( a_{n}\right) ,\left( b_{n}\right) , \left( \alpha_{n}\right) , \left( \beta_{n}\right) $ are constant we describe the asymptotic behavior and periodicity of solutions of above system is also investigated.

Language:
English
Published:
Journal of Mathematical Extension, Volume:14 Issue: 1, Winter 2020
Pages:
41 to 59
magiran.com/p2262755  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!