بررسی خواص مخزنی سازند سروک براساس نمودارهای پتروفیزیکی و ماشین های بردار پشتیبان بهینه سازی شده با الگوریتم ژنتیک
بررسی و پیش بینی خواص مخزنی از فعالیت های مهم و کلیدی برای ارزیابی ظرفیت و توانایی تولید از مخزن است. بدست آوردن پارامترهای مهم مخزنی نظیر تخلخل می تواند در تعیین محل بهینه برای حفاری چاه های بعدی، طراحی و مدیریت فرآیندهای موثر در توسعه میادین نفت وگاز و شبیه سازی فرآیند های ازدیاد برداشت مفید باشد. تعیین دقیق این پارامترها همیشه توام با دشواری هایی است. معمولا برای محاسبه این پارامترها از آنالیز مغزه های سنگ و یا داده های چاه آزمایی و چاه پیمایی استفاده می شود که البته مطمین ترین روش برای محاسبه این پارامترها روش آنالیز مغزه است. اما به دلیل مشکلات اجرایی و هزینه های بالا، تعداد کمی از چاه های یک میدان مغزه گیری می شوند. امروزه استفاده از سیستم های هوشمندی نظیر شبکه های عصبی جهت تخمین پارامترهای مخزنی، پیشرفت های بسیار چشمگیری داشته است. در این پژوهش با استفاده از داده های پتروفیزیکی و الگوریتم ماشین های بردار پشتیبان بهینه سازی شده با الگوریتم ژنتیک به مدلسازی تراوایی و تخلخل سازند سروک در حوضه زاگرس پرداخته شده است. در این مطالعه رویکرد جدیدی جهت تخمین تراوایی با استفاده از حالات مختلف الگوریتم ماشین بردار پشتیبان معرفی شده است. برای این منظور، الگوریتم های SSVR ,SVRP اجرا شده اند. بر اساس بهینه سازی انجام شده، روش های SVRL و SVRPبه ترتیب با ضرایب همبستگی 79/0 و 816/0 برای پیش بینی تراوایی سازند برای این مجموعه از داده ها مورد استفاده قرار گرفتند که روش SVRP کارایی بهتر را نشان می دهد.