Effect of drip and surface irrigation systems on contaminant transport in a soil affected by cracking pathway

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and objectives

The contaminant mass balance in a soil profile is highly necessary in long term agriculture management under different irrigation systems. The objective of this research was assessment of the preferential flow on the travel time and mass balance of NO3 under two irrigation systems.

Materials and methods

Nine PVC-columns were employed with a 60 cm length and 16 cm diameter. Each column included 50 cm height of clay loam soil and two cracks with 50 cm length and 1 cm diameter that filled by course sand. The treatments were based on two groups at three levels. The main group was crack: soil with blocked cracks (M); soil with remove lateral infiltration to cracks (MC-S); soil with lateraled and vertical correlation and infiltration with cracks (MC-C). The subgroup was irrigation systems: surface irrigation (SI) with 2 cm water constant height and surface drip irrigation system (DI4 & DI2) with 2 and 4 l/h flux, respectively. Each experiment column was irrigated for 6 hours (1 h with distilled water; 2h with solution consist of 176 (mg) of NO3 and 61.8 (mg) of Cl in 1 liter distilled water and finally 3 h with distilled water). Before start of experiment, each column was irrigated with distilled water for 5 h to reach saturation condition. The drainage water separately collected from soil and cracks every 15, 30 and 60 min.

Results

The results showed the value of mass balance of NO3 and Cl in SI and DI4 irrigation systems were more similarity. Based on the results, the mass of NO3 of drainage water in M inDI2 was approximately half in compare to SI and DI4. Whiles, this mass of Cl that transported under DI2was more in compare to SI and DI4. Also, the travel time of Cl in MC-C treatment, in crack section, was shorter of NO3. On the other hand, the results show the mass balance of these anions that transported from crack section in the most of the treatments was 1.5 times more. It indicates vertical flows in course paths of crack have the main role to move and transport of contaminants such as and Cl toward groundwater.

Conclusion

Over all, under high water velocity as SI, NO3 is transporting more rapidly but under condition with low water velocity like as DI2 with longer time of unsaturation condition, Cl is leaching more. The preferential flows in treatment with full interaction between soil matrix and cracks were happen more. Also, the preferential flow has stronger role to transport of Cl than NO3.

Language:
Persian
Published:
Water and Soil Conservation, Volume:28 Issue: 1, 2021
Pages:
219 to 236
magiran.com/p2309694  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!