Comparison of specific energy and efficiency of solar dryer under the influence of collector type and investigation of some characteristics of dried tomatoes

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Drying of agricultural products is one of the main ways to prevent product spoilage. There are several methods to dry agricultural products, including direct sunlight, hot, sunny weather, microwave, vacuum, and freezer which use different energy sources. Due to  constrain of fossil fuels supply, the price of this type of energy is increasing thus the tendency to use renewable energies is increasing (Purohit and Kandapal, 2005; Purohit et al., 2006). In Iran the drying efficiency of solar dryers is low because less solar energy is converted into thermal energy. Therefore, many measures have been taken to increase the efficiency of solar collectors which causes to obtain the dried samples with better quality and lower cost. In this study a combination of tracking system and phase change materials (PCM) are used to increase the efficiency of solar dryer cabinet with three types of collectors including flat plat (FPC), parabolic trough (PTSC) and evacuated tube (ETSC) collectors.

Materials and Methods

The dryers used in this study include a cabinet connected to a flat plat, parabolic trough and evacuated tube collectors. In all of the dryers, PCM have been used to maximize solar energy utilization. Moreover to get the maximum solar radiation the tracking system used in FPC and PTSC and a storage tank with fluid pump used in PTSC and ETSC. The air flow rate inside the system was about 0.018 kg.s-1 for all the experiments. The experiments were performed in three continues days from 16 to 18 June 2018, from 8:00 to 24:00. Tomato sample with a thickness of 9 mm was considered for drying process. To describe the drying process of the samples, the moisture ratio versus time was considered. Also, the drying efficiency was defined considering the ratio of energy (thermal and mechanical) consumed to heat the product and extract moisture from the product (Qm) to the total energy used for drying process, including fluid thermal energy (Qf) and mechanical energy (Emec) (Fudholi et al., 2014). In order to evaluate the quality of the dried product at different modes, three quality parameters including color difference, shrinkage and rehydration ratio were considered. Color difference between the fresh and dried samples  was evaluated as one of the most important factors that the customer was considered for selection (Magdic et al., 2009). The change in the volume of the dried product compared to the fresh product is defined as shrinkage. Moreover, to evaluate the rehydration ratio the weight of water absorbed by the samples was considered.

Results and Discussion

The effect of variations of the intensity of solar radiation on the amount of solar energy taken by the collectors was negligible. The time required to dry tomato slices by the dryer equipped with FPC was longer than the other systems. The results also showed that the highest drying efficiency is related to the dryer with ETSC and it was about 39.02%. The least value is related to the dryer with FPC and it was about 30.12%. Due to the long drying time the use of the fan and the pump increase and the amount of energy consumed to drying the product increases as well. Thus the efficiency of the dryer with FPC decreases. The values of specific energy for the dryer with FPC, PTSC and ETSC were obtained as 7.12, 7.92 and 8.34 MJ/kg, respectively. The results of qualitative evaluation of dried tomato slices showed that the product obtained from the dryer equipped with ETSC, due to the short drying time, the color changes and the shrinkage was suitable  in comparison with the other reports. The amount of rehydration ration was the highest as well. Using PCM had no adverse effect on the quality of the dried samples. The results showed that the dryer with ETSC had higher efficiency (about 39.02%) and the quality of the samples was suitable compared to other systems. Using recycling system can improve the thermal efficiency of the solar dryer.

Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:17 Issue: 5, 2021
Pages:
717 to 728
magiran.com/p2338102  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!