Adaptive fuzzy fractional-order fast terminal sliding mode control for a class of uncertain nonlinear systems
Article Type:
Research/Original Article (دارای رتبه معتبر)
The paper introduces a novel adaptive fuzzy fractional-order (FO) fast terminal sliding mode control procedure for a class of nonlinear systems in the presence of uncertainties and external disturbances. For this purpose, firstly, using fractional calculus, a new FO nonlinear sliding surface is proposed and then, the corresponding FO fast terminal sliding mode controller (FOFTSMC) is designed to satisfy the sliding condition in finite time. Next, to eliminate the chattering phenomenon, a fuzzy system is constructed to design a continuous switching control law. The finite-time stability of the proposed adaptive fuzzy FOFTSMC (AFFOFTSMC) is proved using the concept of Lyapunov stability theorem. Finally, to illustrate the effectiveness of the proposed AFFOFTSMC, three examples are given as case studies. The numerical simulation results confirm the superiority of the proposed controller, which are the better robust performance, faster convergence, finite-time stability of the closed-loop control system, and a chattering free control effort compared to other mentioned control methods.
International Journal of Industrial Electronics, Control and Optimization, Volume:5 Issue: 1, Winter 2022
77 to 87  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!