Empowering Face Recognition Methods Using a GAN-based Single Image Super-Resolution Network
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Face recognition is one of the most common authentication techniques widely used due to its easy access. In many face recognition applications, captured images are often of low resolution. Face recognition methods perform poorly on low resolution images because they are trained on high resolution face images. Although existing face hallucination methods may generate visually pleasing images, they cannot improve the performance of face recognition methods at low resolution as the structure of the face image and high-frequency details are not sufficiently preserved. Recent advances in deep learning have been used in this paper to propose a new face super-resolution approach to empower face recognition methods. In this paper, a Generative Adversarial Network is used to empower face recognition in low-resolution images. This network considers image edges and reconstructs high-frequency details to preserve the face structure. The proposed technique to generate super-resolved features is usable in any face recognition method. We have used some state-of-the-art face recognition methods to evaluate the proposed method. The results show a significant impact of the proposed method on the accuracy of face recognition of low resolution images.

Language:
English
Published:
International Journal of Engineering, Volume:35 Issue: 10, Oct 2022
Page:
5
magiran.com/p2444317  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 700,000ريال می‌توانید 100 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.