Forecasting of Daily Outpatient Visits Based on Genetic Programming
Article Type:
Research/Original Article (دارای رتبه معتبر)

The forecasting of daily outpatient visits has significant practical implications in outpatient clinic operation management, not only contributing to guiding long-term resource planning and scheduling but also making tactical resolutions for short-term adjustments on special days such as holidays. We here in propose an effective genetic programming (GP)-based forecasting model to predict daily outpatient visits (OV) in a primary hospital.


In the GP-based model, the holiday-based distance outlier mining algorithm was used to determine the holiday effect. In addition, solar terms were applied as the smallest unit to more accurately determine the impact of a change in the climate on the outpatient volume. A segmental learning strategy also was used to predict the daily outpatient volume for the time series data.


The GP-based prediction could more effectively extract depth information from a finite training sample size and achieve a better performance for predicting daily outpatient visits, with lower root mean square error (RMSE) and higher coefficient of determination (R2) values, than the seasonal autoregressive integrated moving average (SARIMA) model in the time range of holidays and the holiday effect.


GP-based model can achieve better prediction performance by overcoming the shortcomings of the SARIMA model. The results can be applied to support decision-making and planning of outpatient clinic resources, to help managers implement periodic scheduling of available resources on the basis of periodic features, and to perform proactive scheduling of additional resources.

Iranian Journal of Public Health, Volume:51 Issue: 6, Jun 2022
1313 - 1322  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 700,000ريال می‌توانید 100 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.