مقایسه شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در پیش بینی کدورت فیلتراسیون شنی کند تصفیه خانه آب طبس
کدورت آب تصفیه شده به عنوان یک پارامتر مهم در تعیین کیفیت آب آشامیدنی و یا صنعتی در تمامی تصفیه خانه ها اندازه گیری می شود. از دیر باز با توجه به اهمیت یافتن شیوع عوامل بیماریزا مثل ژیاردیا و کریپتوسپوریدیوم که عامل ایجاد بیماری های خطرناکی همچون اسهال خونی می باشند، رابطه کاهش میزان کدورت و افزایش حذف این میکروارگانیزم ها در مطالعات به اثبات رسیده است.
در این مطالعه یک مدل شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در پیش بینی کدورت خروجی از آب تصفیه شده تصفیه خانه شهر طبس توسعه و عملکرد آنها با هم مقایسه گردید. کل جامدات محلول، pH، ، دما و کدورت ورودی به عنوان پارامترهای ورودی مدل ها در پیش بینی ها استفاده شد. بهترین الگوریتم پس انتشار و تعداد نورون برای بهینه سازی معماری مدل تعیین شد.
نتایج نشان داد که الگوریتم لونبرگ-مارکوارت به عنوان بهترین الگوریتم انتخاب شد و تعداد نورون بهینه نیز 16 تعیین شد. همچنین نتایج تحلیل حساسیت مدل شبکه عصبی نشان داد که کدورت ورودی با مقدار 29 درصد به عنوان مهمترین پارامتر در توسعه مدل شبکه عصبی مصنوعی است.
نتایج ضریب همبستگی مدل رگرسیون خطی چندگانه و مدل شبکه عصبی مصنوعی به ترتیب برای داده های آموزش 63/0 و 892/0 و برای داده های تست 60/0 و 8571/0 به دست آمد که نشان از برتری مدل شبکه عصبی مصنوعی در پیش بینی کدورت خروجی از تصفیه خانه آب طبس است.
-
Evaluation of Environmental Health Parameters for COVID-19 Disease in South Khorasan Province, Iran
Adeleh Esform, Hamid Salehinia, *
Archives of Hygiene Sciences, Summer 2022 -
On the nature of heavy metals in particulate matter (PM10, PM2.5) and their health impact assessment for a desert city in Iran, Birjand
Adeleh Esform, Mohammad Sadegh Hassanvand, *, Alireza Amirabadizadeh, Sajad Lashkari
Journal of Air Pollution and Health, Summer 2022