Forecasting Alisadr Cave Tourism Demand using Combination of Short-term and Log-terms Forecasts
Article Type:
Research/Original Article (دارای رتبه معتبر)
Nowadays, the tourism industry has become one of the most important sectors in the world economy. Due to the perishability of this industry, accurate forecasting of the demand is very important for tourism planning and resource allocation. Studies show that due to the diversity and complexity of the factors affecting tourism demand, the combination of different approaches may increase the forecasting accuracy. The aim of this paper is to forecast the tourism demand of Alisadr cave. For this purpose, a method based on artificial neural networks is presented, in which the results of linear and non-linear methods and short-term and long-term forecasts are combined. This method is applied to a dataset of Alisadr cave tourists. The evaluation results show that in most cases, the proposed combined method can predict the tourism demand with higher accuracy than the monthly and seasonal methods based on neural networks and random forest models. The predictive models obtained from this study can enhance customer service and improve the interaction between users and tourist ticketing web applications and online reservation programs.
International Journal of Web Research, Volume:5 Issue: 2, Autumn-Winter 2022
47 to 53  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!