Machine learning decision tree based on regression in data mining to extract more knowledge
Article Type:
Research/Original Article (دارای رتبه معتبر)

In a data-driven decision-making process, there are various types of data that should be thoroughly processed and analyzed. Data mining is a well-recognized method to obtain such information by analyzing data and transforming it into actionable insights for further use. Among the various data mining techniques such as classification, clustering, and association rules, this research focused on classification techniques and presented an innovative regression-based learning approach in the decision tree (DT) models. DT algorithms are easy-to-understood and can work with different data types including continuous, discrete, and non-numerical. Despite a large number of existing studies, which attempt to enhance the performance of the DT models, there is still a gap in accurately extracting knowledge from databases. In this research, this issue is addressed by exploiting regression and coefficient of determination (R2) methods in a DT. The proposed tree provides new insights in the following aspects: split criterion, handling continuous and discrete variables, labeling leaf node, pruning process by stopping criteria and tree evaluation. The superiority of the proposed algorithm is demonstrated using a real-world hospital database and a comparison with existing approaches is provided. The results showed that the proposed algorithm outperforms the existing methods in terms of higher accuracy and lower complexity.

Journal of Industrial Engineering and Management Studies, Volume:9 Issue: 2, Summer-Autumn 2022
86 to 112  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!