Newton-Krylov generalized minimal residual algorithm in solving the nonlinear two-dimensional integral equations of the second kind on non-rectangular domains with an error estimate
Author(s):
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:
In this paper, an applicable numerical approximation has been proposed for solving nonlinear two-dimensional integral equations (2DIEs) of the second kind on non-rectangular domains. Because directly applying the collocation methods on non-rectangular domains is difficult, in this work, at first, the integral equation is converted to an equal integral equation on a rectangular domain, then the solution is approximated by applying 2D Jacobi collocation method, the implementation of these instructions reduces the integral equation to a system of nonlinear algebraic equations, therefore, solving this system has an important role to approximate the solution. In this paper, Newton-Krylov generalized minimal residual (NK-GMRes) algorithm is used for solving the system of nonlinear algebraic equations. Furthermore, an error estimate for the presented method is investigated and several examples confirm the accuracy and efficiency of the proposed instructions.
Keywords:
Language:
English
Published:
Journal of Computational Mathematics and Computer Modeling with Applications, Volume:1 Issue: 2, Autumn 2022
Pages:
35 to 45
magiran.com/p2537813
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یکساله به مبلغ 990,000ريال میتوانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
- حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران میشود.
- پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانههای چاپی و دیجیتال را به کاربر نمیدهد.
In order to view content subscription is required
Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!