The effect of glycerol and nanocellulose on hydrophilic and mechanical properties of gelatin-carboxymethyl cellulose composites

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

The biodegradability of synthetic plastics derived from petroleum is a very slow process and complete decomposition of them lasts several years. This increases environmental pollution. Extensive efforts have been made to develop and improve biopolymers-based packaging. Biopolymers derived from renewable agricultural resources are an appropriate alternative to synthetic plastics. The use of nanotechnology in the field of polymer science has led to the production of nanocomposite polymers. The valuable nanocomposites would be produced if natural nanoparticles are used in composites preparation. Because of the importance of nanocomposites in the production of biodegradable films and due to desired properties of gelatin and carboxymethyl cellulose in film production, this study aimed to investigate the effect of glycerol and nanocellulose on the properties of gelatin-carboxymethyl cellulose nanocomposites. 

Materials and Methods

To prepare 12 different treatments based on statistical design, 1 g of gelatin and 1 g of carboxymethylcellulose were dissolved in distilled water to form a uniform solution. Then, glycerol as a plasticizer was added to the prepared solutions at different levels (20 to 60% w/w). The determined amount of nanocellulose (0- 30% w/w), based on the biopolymers weight, was added to the cooled blend at 70°C. Nanocellulose was extracted from cotton through the chemical method, cotton was gone under chemical hydrolysis by the sulfuric acid solution (65% w/v). The properties of gelatin-carboxymethylcellulose nanocomposites were studied. The produced nanocellulos evaluated by scanning electron microscopy and X-ray diffraction techniques. The thickness of the films was measured using a caliper with a precision of 0.01. At five different parts of each film. Water vapor flux and water vapor permeability through the film samples were determined. The dry matter of 20× 20 mm film samples before and after immersion in 50 ml of distilled water for 24h at 25 °C was determined to calculate the solubility in water of the films. To measure the moisture absorption of the nanocomposite samples, 20× 20 mm film pieces were kept in a container containing potassium sulfate saturated solution (RH= 97%) at 25°C for 4 days. Films were weighted initially and at the end of the experiment. Sessile drop method, a common technique for determining the wetting properties of solid surfaces, was then used to determine the contact angle. Ultimate tensile strength and elongation at break were measured. The belt-shaped sample (8× 1 cm) of the film was stretched by the instrument at a velocity of 1 mm/s. The color and transparency of the samples were evaluated in the black box by image processing technique. Total color difference (ΔE), yellow index (YI), and white index (WI) of the samples were calculated. Treatments were prepared according to central composite design (CCD) and were statically analyzed by response surface method (RSM). 

Results and Discussion

The prepared films showed low water vapor permeability (3.62× 10-11 to 2.23× 10-12 gm/m2Pas). The lowest amount of water vapor permeability was obtained when the low level of nanocrystalline cellulose (4.4%) was used. The high amounts of glycerol and nanocellulose increased the solubility of the films and even in some treatments the samples were completely dissolved in water. The hydrophilic nature of the gelatin and carboxymethyl cellulose used in the preparation of composites may be the reason for the high solubility of the produced films. At the same time, the samples showed high moisture absorption. Moisture absorption decreased as a result of the glycerol content increased, also the effects of the presence of nanocrystalline cellulose as a filler on the moisture absorption decrease cannot be neglected. A moderate contact angle of about 60º was observed, the interactions between the polar and the hydroxyl groups of the biomaterials used in the production of composites caused different behaviors observed in the various treatments. The interaction of nanocellulose and glycerol had a significant effect on the contact angle. The films had high ultimate tensile strength (84.37 MPa) while the elongation at break was 4.14% for the same treatment, which indicates low flexibility of the produced films. The color of the samples was evaluated as suitable. The use of 60% glycerol and 4.4% nanocellulose results in the production of films with desirable properties. The use of gelatin and carboxymethylcellulose produced composites that had improved properties in the terms of water vapor permeability and surface wetting compared to pure films.Composites made of gelatin and carboxymethylcellulose showed high ultimate tensile strength, although the elongation at break of them was not desirable. In terms of barrier properties against the water vapor, prepared composites demonstrated improved properties when compared to other bio-based made films. On the other hand, in terms of hydrophilicity, they are classified as moisture-sensitive films, which limits their use for foods with high moisture content. The use of carboxymethyl cellulose can improve the water vapor permeability of pure gelatin films. Also, the use of gelatin increases the contact angle of water of pure carboxymethyl cellulose films. Gelatin-carboxymethyl cellulose nanocomposite contains 60% glycerol and 4.4% nanocellulose presents improved and desirable properties.

Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:18 Issue: 5, 2023
Pages:
681 to 697
magiran.com/p2538707  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!