Zipped coherent quantales

Article Type:
Research/Original Article (دارای رتبه معتبر)
The aim of this paper is to define an abstract quantale framework for extending some properties of the zip rings (studied by Faith, Zelmanowitz, etc.) and the weak zip rings (defined by Ouyang). By taking as prototype the quantale of ideals of a zip ring (resp. a weak zip ring) we introduce the notion of zipped quantale (resp. weakly zipped quantale). The zipped quantales also generalize the zipped frames, defined by Dube and Blose in a recent paper. We define the zip (bounded  distributive) lattices and we prove that a coherent quantale A is weakly zipped iff the reticulation L(A) of A is a zip lattice.  From this result we obtain the following corollary: the coherent quantale A is weakly zipped iff the frame R(A) of the  radical elements of A is zipped. Such theorems allow us to extend to quantale framework a lot of results obtained by  Dube and Blose for the zipped frames and for the weak zip rings.
Journal of Algebraic Hyperstructures and Logical Algebras, Volume:4 Issue: 1, Winter 2023
61 to 79  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!