A new method to predict the quality of umbilical cord blood units based on maternal and neonatal factors and collection techniques
Article Type:
Research/Original Article (دارای رتبه معتبر)
The saving banks of “umbilical cord blood stem cells” are considered as strategic health-based institutions in most countries. Due to the limited capacity of cord blood sample storage tanks, the samples should be evaluated according to their quality. So these banks need a method to assess quality. In this paper, first, the effective factors on the quality index of the extracted cord blood from newborn infants are identified using the electronic records and database of Royan’s umbilical cord blood bank. Then by machine learning and various statistical methods such as multilayer perceptron neural networks, radial basis function neural networks, logistic regression, and C4.5 decision tree, the quality value of blood samples and their proper category (for discarding or freezing) are determined. Two different sets of data have been used to evaluate the proposed methods. The results show that the ensemble of radial basis function neural network with k-means clustering model has the best accuracy compared to other methods, which categorizes the samples with 91.5% accuracy for the first data set and 81.6% accuracy for the second one. The results also show that using this method can save about $1 million annually.
Journal of Applied Research on Industrial Engineering, Volume:10 Issue: 2, Spring 2023
218 to 237
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!