Assessment of the Mathematical Model for Investigating Covid-19 Peak as A Global Epidemic in Iran

Article Type:
Research/Original Article (بدون رتبه معتبر)

In this paper, we investigate the COVID-19 pandemic in Iran from a mathematical modeling perspective. By improving the well-known susceptible infected recovered (SIR) family of compartmental models and adding unreported cases obtain a local model for Iran. Since we only want infected cases, we have refused to add other classes which there are can be. we estimate the infected case by using the reported data of the first period of the outbreak and will apply the results to data of the provinces of Ardabil and Guilan which were available to us as well as published data from Iran. We show that, if some of the indexes are constant, the future infectious reported cases are predictable. Also, we show a good agreement between the reported data and the estimations given by the proposed model. We further demonstrate the importance of choosing this proposed model used to by finding the basic reproductive number. Also, we will estimate the probability distribution for the death rate. Our study can help the decision-making of public health.

Journal of Mathematical Analysis and Convex Optimization, Volume:3 Issue: 2, 2022
129 to 142  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!