Evaluating the Gray Level Co‑Occurrence Matrix‑Based Texture Features of Magnetic Resonance Images for Glioblastoma Multiform Patients’ Treatment Response Assessment

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background

Medical images of cancer patients are usually evaluated qualitatively by clinical specialists which makes the accuracy of the diagnosis subjective and related to the skills of clinicians. Quantitative methods based on the textural feature analysis may be useful to facilitate such evaluations. This study aimed to analyze the gray level co‑occurrence matrix (GLCM)‑based texture features extracted from T1‑axial magnetic resonance (MR) images of glioblastoma multiform (GBM) patients to determine the distinctive features specific to treatment response or disease progression.

Methods

20 GLCM‑based texture features, in addition to mean, standard deviation, entropy, RMS, kurtosis, and skewness were extracted from step I MR images (obtained 72 h after surgery) and step II MR images (obtained three months later). Responded and not responded patients to treatment were classified manually based on the radiological evaluation of step II images. Extracted texture features from Step I and Step II images were analyzed to determine the distinctive features for each group of responsive or progressive diseases. MATLAB 2020 was applied to feature extraction. SPSS version 26 was used for the statistical analysis. P value < 0.05 was considered statistically significant.

Results

Despite no statistically significant differences between Step I texture features for two considered groups, almost all step II extracted GLCM‑based texture features in addition to entropy M and skewness were significantly different between responsive and progressive disease groups.

Conclusions

GLCM‑based texture features extracted from MR images of GBM patients can be used with automatic algorithms for the expeditious prediction or interpretation of response to the treatment quantitatively besides qualitative evaluations.

Language:
English
Published:
Journal of Medical Signals and Sensors, Volume:13 Issue: 4, Oct-Dec 2023
Pages:
261 to 273
https://www.magiran.com/p2618550  
سامانه نویسندگان
  • Tahmasbi، Marziyeh
    Author (3)
    Tahmasbi, Marziyeh
    Assistant Professor Medical Physics, Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University Of Medical Sciences, اهواز, Iran
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)