Estmiating of Soil Particles Percentage Using Visible-Near Infra-Red (NIR) spectrometry in Semirom area, Isfahan
The present research performed to estimate soil texture using visible near-infrared spectrometry in Semirom, Isfahan. A total number of 200 soil samples (0-10 cm) were collected from the Semirom area (51º 17' - 52º 3' E; 30º 42' - 31º 51' N), Isfahan. The samples were air dried and passed through a 2 mm sieve, and soil particles percentage was determined in the laboratory using hydrometry method. Reflectance spectra of all samples were measured using an ASD field spectrometer. Different pre-processing methods i.e., First Derivatives and Savitzky-Golay Filter, Multiplicative Scatter Correction and Standard Normal Variable were applied and performed on spectral data. The Partial Least Squares Regression, Support Vector Machine Regression and Artificial Neural Network models were used to estimate soil texture. The best result was obtained for Silt estimation, with excellent values of RPD >2, R2 =0.98 and RMSE=1.08 using Artificial Neural Network model with MSC pre-processing technique. The results indicated the desirable capability of Artificial Neural Network model with MSC and SNV pre-processing techniques in estimating the Clay (RPD >2, R2=0.94 and RMSE=1.21) and Sand (RPD >2, R2=0.84 and RMSE=6.24) contents of the soils, respectively. In general, based on the results of this study, VNIR spectroscopy was successful in estimating soil particles percentage and showed its potential for substituting laboratory analyses.
پرداخت حق اشتراک به معنای پذیرش "شرایط خدمات" پایگاه مگیران از سوی شماست.
اگر عضو مگیران هستید:
اگر مقاله ای از شما در مگیران نمایه شده، برای استفاده از اعتبار اهدایی سامانه نویسندگان با ایمیل منتشرشده ثبت نام کنید. ثبت نام
- حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران میشود.
- پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانههای چاپی و دیجیتال را به کاربر نمیدهد.