‎Gautama and Almost Gautama Algebras and their associated logics

Article Type:
Research/Original Article (بدون رتبه معتبر)
‎Recently‎, ‎Gautama algebras were defined and investigated as a common generalization of the variety $\mathbb{RDBLS}\rm t$ of regular double Stone algebras and the variety $\mathbb{RKLS}\rm t$ of regular Kleene Stone algebras‎, ‎both of which are‎, ‎in turn‎, ‎generalizations of Boolean algebras‎. ‎Those algebras were named in honor and memory of the two founders of Indian Logic--{\bf Akshapada Gautama} and {\bf Medhatithi Gautama}‎. ‎The purpose of this paper is to define and investigate a generalization of Gautama algebras‎, ‎called ``Almost Gautama algebras ($\mathbb{AG}$‎, ‎for short).''‎ ‎More precisely‎, ‎we give an explicit description of subdirectly irreducible Almost Gautama algebras‎. ‎As consequences‎, ‎explicit description of the lattice of subvarieties of $\mathbb{AG}$ and the equational bases for all its subvarieties are given‎. ‎It is also shown that the variety $\mathbb{AG}$ is a discriminator variety‎. ‎Next‎, ‎we consider logicizing $\mathbb{AG}$; but the variety $\mathbb{AG}$ lacks an implication operation‎. ‎We‎, ‎therefore‎, ‎introduce another variety of algebras called ``Almost Gautama Heyting algebras'' ($\mathbb{AGH}$‎, ‎for short) and show that the variety $\mathbb{AGH}$ %of Almost Heyting algebras‎ ‎is term-equivalent to that of $\mathbb{AG}$‎. ‎Next‎, ‎a propositional logic‎, ‎called $\mathcal{AG}$ (or $\mathcal{AGH}$)‎, ‎is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety $\mathbb{AG}$‎, ‎via $\mathbb{AGH},$ as its equivalent algebraic semantics (up to term  equivalence)‎. ‎All axiomatic extensions of the logic $\mathcal{AG}$‎, ‎corresponding to all the subvarieties of $\mathbb{AG}$ are given‎. ‎They include the axiomatic extensions $\mathcal{RDBLS}t$‎, ‎$\mathcal{RKLS}t$ and $\mathcal{G}$ of the logic $\mathcal{AG}$ corresponding to the varieties $\mathbb{RDBLS}\rm t$‎, ‎$\mathbb{RKLS}\rm t$‎, ‎and $\mathbb{G}$ (of Gautama algebras)‎, ‎respectively‎. ‎It is also deduced that none of the axiomatic extensions of‎ ‎$\mathcal{AG}$ has the Disjunction Property‎. ‎Finally‎, ‎We revisit the classical logic with strong negation $\mathcal{CN}$ and classical Nelson algebras $\mathbb{CN}$ introduced by Vakarelov in 1977 and improve his results by showing that $\mathcal{CN}$ is algebraizable with $\mathbb{CN}$ as its algebraic semantics and that the logics $\mathcal{RKLS}\rm t$‎, ‎$\mathcal{RKLS}\rm t\mathcal{H}$‎, ‎3-valued \L ukasivicz logic and the classical logic with strong negation are all equivalent‎.
Transactions on Fuzzy Sets and Systems, Volume:2 Issue: 2, Fall - Winter 2023
77 to 112
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!