‎On The Spectrum of Countable MV-algebras

Article Type:
Research/Original Article (بدون رتبه معتبر)
‎In this paper we consider MV-algebras and their prime spectrum‎. ‎We show that there is an uncountable MV-algebra that has the same spectrum as the free MV-algebra over one element‎, ‎that is‎, ‎the MV-algebra $Free_1$ of McNaughton functions from $[0,1]$ to $[0,1]$‎, ‎the continuous‎, ‎piecewise linear functions with integer coefficients‎. ‎The construction is heavily based on Mundici equivalence between MV-algebras and lattice ordered abelian groups with the strong unit‎. ‎Also‎, ‎we heavily use the fact that two MV-algebras have the same spectrum if and only if their lattice of principal ideals is isomorphic‎.‎As an intermediate step we consider the MV-algebra $A_1$ of continuous‎, ‎piecewise linear functions with rational coefficients‎. ‎It is known that $A_1$ contains $Free_1$‎, ‎and that $A_1$ and $Free_1$ are equispectral‎. ‎However‎, ‎$A_1$ is in some sense easy to work with than $Free_1$‎. Now‎, ‎$A_1$ is still countable‎. ‎To build an equispectral uncountable MV-algebra $A_2$‎, ‎we consider certain ``almost rational'' functions on $[0,1]$‎, ‎which are rational in every initial segment of $[0,1]$‎, ‎but which can have an irrational limit in $1$‎.‎We exploit heavily‎, ‎via Mundici equivalence‎, ‎the properties of divisible lattice ordered abelian groups‎, ‎which have an additional structure of vector spaces over the rational field‎.
Transactions on Fuzzy Sets and Systems, Volume:2 Issue: 2, Fall - Winter 2023
184 to 193
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!