Post-harvest Application of Hot Water, Calcium Chloride and Calcium Nano-Chelate Fertilizer on Amelioration of Chilling Injury and Extending the Shelf Life of Sweet Orange

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Low temperature storage is the most important method used to preserve harvested products. Keeping products at low temperatures, above the freezing point up to 10 degrees Celsius, can cause frost damage in fruits and vegetables, especially tropical and subtropical products. The use of heat treatments as safe, organic and alternative physical methods is increasing, these treatments are used to maintain the quality after harvesting and also to prevent frostbite of garden products. Also, one of the recommended methods to reduce fruit waste is to increase the calcium concentration of the fruit by using calcium solutions. Calcium is one of the most important mineral elements that is involved in determining the quality of the fruit and its shelf life. Studies conducted on the use of nano fertilizers in some species of fruit trees has shown their potential role in improving the yield of the product and the physical and chemical properties of the fruitThis study was conducted to investigate the effect of postharvest treatments of calcium chloride and nano chelated calcium fertilizers on chilling injury and physiological characteristics of local orange fruits stored at 2 ±0.5° C and 85% relative humidity for 60 to 120 days.
 
Materials and Methods
In this research, orange fruits of the local cultivar Citrus sinensis at the stage of commercial maturity based on the taste index (10TSS/TA⋍) were prepared from Darab city of Fars province and transferred to the Physiology Laboratory of Horticultural Sciences Department of Shiraz University. Then the fruits were disinfected with 2% sodium hypochlorite and washed with distilled water. Treatments included calcium chloride and nano chelated calcium fertilizers at different concentrations of zero, 3 and 6 dissolved in cold water (20°C) and hot water at 45 °C for 25 and 15 min, respectively. Sampling was done on days 60 and 120. To simulate shelf life conditions, before measuring the parameters, the fruits were kept at laboratory temperature for two days. In this research, the changes in fruit tissue firmness, freezing index, weight loss percentage, soluble solids, total acidity, ascorbic acid, ion leakage, potassium ion leakage, malondialdehyde, calcium content of fruit skin and flesh, fruit color, catalase enzymes and peroxidase were measured. Data analysis was done using SAS software version 4.9 and comparison of averages was done by LSD test at 5% probability level.
 
Results and Discussion
There was a significant difference between nano chelated calcium and calcium chloride in calcium enrichment in pulp and fruit skin Calcium chloride and nano chelated calcium treatments dissolved in hot water reduced weight loss, soluble solids content, acidity, ascorbic acid, ion leakage and malondialdehyde and the activity of the antioxidant enzymes catalase and peroxidase. Nano chelated calcium increased calcium content by 44% in fruit skin and up to 41% in fruit pulp compared to calcium chloride. Nano chelated calcium 3 and 6 % showed more stability in fruit weight (159 and 400%, respectively) compared to calcium chloride after two months of storage. After 60 and 120 days of storage, the content of ascorbic acid in fruits treated with 6 nano chelated calcium was 73% higher than calcium chloride. Nano chelated calcium 3 % compared to calcium chloride prevented 39.6 of potassium ion leakage during 60 days of storage. The amount of ascorbic acid in the 3% and 6% nano calcium treatment and the tissue hardness in the 3% nano calcium chelate treatment after two months of storage were estimated to be higher than the control and calcium chloride. Calcium nano chelate 6% improved the calcium content of fruit flesh and skin due to increased permeability. Warm water pretreatment with calcium compounds is an efficient and recommendable treatment for the preservation of orange fruits in cold storage conditions due to the improvement and reduction of the severity of the increase in indicators related to the occurrence of frost damage in the skin of fruits.
 
Conclusion
One of the primary concerns during storage is the loss of fruit weight. Calcium nano chelate, in comparison to the control and calcium chloride treatments, exhibited the least weight loss over the two months of storage. This is attributed to the critical role of calcium in influencing the shelf life of fruits. It was observed that immersing fruits in calcium compounds dissolved in hot water and utilizing 6% nano chelated calcium had a significant positive impact on enhancing and preserving the quality of orange fruits during cold storage.
Language:
Persian
Published:
Journal of horticulture science, Volume:37 Issue: 3, 2023
Pages:
801 to 819
magiran.com/p2655001  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!