Inferring Diffusion Network from Information Cascades using Transitive Influence

Article Type:
Research/Original Article (دارای رتبه معتبر)

Online social networks have a great impact on people’s life and how they interact. When information is transmitted from one person to another in a social network, a diffusion process occurs. Each node of a network that participates in the diffusion process leaves some effects on this process, such as its transmission time. In most cases, despite the visibility of such effects of diffusion process, the structure of the network is unknown. Knowing the structure of a social network is essential for many research studies such as: such as community detection, expert finding, influence maximization, information diffusion, sentiment propagation, immunization against rumors, etc. In recent years, various methods have been proposed for inferring a diffusion network. A wide range of proposed models, named parametric models, assume that the pattern of the propagation process follows a particular distribution. Also, the models provided for large volumes of data do not have the required performance due to their high execution time. However, in this article, a nonparametric model is proposed that infers the underlying diffusion network. In the proposed model, all potential edges between the network nodes are identified using a similarity-based link prediction method. Then, a fast algorithm for graph pruning is used to reduce the number of edges. The proposed algorithm uses the transitive influence principle in social networks. Comparison of the proposed method on different network types and various models of information cascades show that the model performs better precision and decreases the execution time too.

Journal of Information Systems and Telecommunication, Volume:11 Issue: 4, Oct-Dec 2023
307 to 319  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!