مقایسه مدل ها در پیش بینی موارد تجمعی بستری و فوت کووید-19 (مطالعه موردی: شهرستان بهاباد)

پیام:
نوع مقاله:
مطالعه موردی (دارای رتبه معتبر)
چکیده:
مقدمه

بیماری کووید-19، یک بیماری تنفسی است که در اثر سندرم تنفسی حاد کرونا ویروس-2 ایجاد شده است. پیش بینی تعداد موارد جدید و مرگ و میر می تواند گام مفیدی در پیش بینی هزینه ها و امکانات مورد نیاز در آینده باشد. هدف از این مطالعه مدلسازی، مقایسه عملکرد مدل ها و پیش بینی موارد جدید بستری و مرگ ومیر در آینده نزدیک است.

روش پژوهش:

 در این مقاله 9 تکنیک پیش بینی بر روی داده های کووید-19 شهرستان بهاباد استان یزد تحت آزمایش قرار گرفت و با استفاده از معیارهای ارزیابی میانگین مربعات خطا (MSE)، جذر میانگین مربعات خطا (RMSE)، میانگین قدر مطلق خطا (MAE) و میانگین درصد قدرمطلق خطا (MAPE) مدل ها باهم مقایسه شدند.

یافته ها

نتایج تحلیل نشان داد، بهترین مدل با توجه به معیارهای ارزیابی مذکور برای پیش بینی موارد تجمعی بستری کووید-19 مدل هموارسازی اسپلاین مکعبی و برای موارد تجمعی فوت مدل رگرسیون KNN می باشد. هم چنین مدل شبکه های عصبی اتورگرسیو و مدل تتا برای موارد بستری و برای موارد فوت مدل شبکه های عصبی اتورگرسیو دارای بدترین عملکرد را در میان دیگر مدل ها دارا می باشد.

نتیجه گیری: 

این مطالعه می تواند درک مناسبی از روند شیوع بیماری کووید-19 در این منطقه ارایه کند تا با اتخاذ اقدامات احتیاطی و تدوین سیاست های مناسب بتوان به نحو احسن از این بیماری عبور کرد. هم چنین برخلاف مطالعات دیگر این مطالعه، از 9 تکنیک متفاوت و مقایسه آن ها، استفاده کرده است که به نوبه خود ضریب اطمینان را در تصمیم گیری بالا برده است. هم چنین نکته ای که حایز اهمیت می باشد این است که باید داده ها در زمان واقعی بروز شوند.

زبان:
فارسی
صفحات:
7 تا 17
لینک کوتاه:
https://www.magiran.com/p2664802 
مقالات دیگری از این نویسنده (گان)