Comparison of the function of ELM and RBF models for estimating the porosity of the Asmari Formation, in one of the offshore fields of the northwest Persian Gulf

Article Type:
Research/Original Article (دارای رتبه معتبر)

Nowadays, the use of artificial intelligence is common to increase the accuracy of the study and, close to reality, is used in the oil industry to increase the accuracy of studying and understanding the relationship between various parameters. The main purpose of this study is to compare the performance of the two methods of Extreme Learning Machine (ELM) and Radial Basis Function (RBF) in porosity estimation, which is static oil modeling. The data from seven wells in the offshore field (Hendijan Oilfield) of the northwestern Persian Gulf were examined. In this regard, post-stack seismic attributes which have a significant relationship with porosity and porosity log for each well were used to compare the performance of the ELM and RBF networks under the same conditions. Eventually, it reveals that ELM is quite sensitive to the data set and needs more data points to prepare a map (quantitatively), but is better than RBF in terms of classification (qualitative). On the other hand, RBF is one of the most powerful algorithms in mapping, especially in low numbers of data points, which can be challenging for others.

Stratigraphy and Sedimentology Researches, Volume:39 Issue: 2, 2023
45 to 58  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!