An intelligent hybrid model for forecasting the stock price index volatility: The case of Tehran stock exchange

Article Type:
Research/Original Article (دارای رتبه معتبر)
Forecasting the stock price index volatility is considered a strategic and challenging issue in the stock markets, and it is momentous for traders and investors in the decision-making process. Hence, the presentation of an efficient model for forecasting the stock price index volatility is a crucial and hard task because stock market data and price fluctuations have high volatility and nonlinearity characteristics. To beat this challenge, this paper proposes a new hybrid model by applying artificial intelligence algorithms to forecast the stock price index. It incorporates four phases to provide a dynamic and exact model: (1) Select popular and key technical indicators as input variables (2) Apply Adaptive Neuro-Fuzzy Inference System (ANFIS) for designing a substructure to provide a high-quality and quick solution (3) Use Modified Particle Swarm Optimization (MPSO) to enhance predictive accuracy by simultaneously and adjusting the length of each interval in the discourse universe and the appropriate degree of membership (4) Employ Parallel Genetic Algorithm (PGA) to solve complex issues with computational weight optimization and adjusting the decision vectors employing genetic operators. The stock market data of “Tehran Stock Exchange (TSE)” from 01/01/2011 to 31/12/2021 are utilized to examine the functionality of the proposed model. In comparative assessments, the overall performance of the ANFIS-MPSO-PGA model based on 5 criteria achieved 81.45%, which was significantly better than other methods.
Journal of Industrial Engineering and Management Studies, Volume:10 Issue: 2, Summer-Autumn 2023
116 to 130  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!