Implementation of Machine Learning in Structural Reliability Analysis

Article Type:
Review Article (بدون رتبه معتبر)

Reliability is a probabilistic measure of structural safety. In Structural Reliability Analysis (SRA), both loads and resistances are modelled as probabilistic variables, and the failure of structure occurs when the total applied load is larger than the total resistance of the structure. The probability distribution of the loads as well as the resistance can depend upon multiple variables. Considering all these factors, the probability of failure of a structure is calculated.SRA can be used for systematic adjustment of structural safety factors, and for the probabilistic design and operation of structures. For example, SRA can be used to design a structure to operate during the desired lifetime safely, or it can be used for maintenance scheduling of structural systems to prevent potential failures. Machine learning (ML) is the study of computer algorithms that can improve automatically through experience and by the use of data. Machine learning and statistics are closely related fields in terms of methods, but distinct in their principal goal: statistics draws inferences from a sample, while machine learning finds generalizable predictive patterns. ML methods can be applied to analytical and numerical SRA methods, such as First/Second-Order Reliability Methods (FORM/SORM) and First Order Second Moment (FOSM).

Journal of Civil Engineering and Materials Application, Volume:7 Issue: 3, Summer 2023
131 to 137  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!