Segmentation of CT images of the liver with radiology based on the water-based algorithm

Article Type:
Research/Original Article (بدون رتبه معتبر)

The purpose of the present study is to segment the CT images of the liver with radiology based on the watershed algorithm.

Materials and methods

In this study, a semi-automated method for dividing liver tumors using CT scan images has been presented. First, the tumor and liver tissue is determined by the user with point selection. Then, with the help of Abpakhshan method, the three-dimensional morphology of the primary points in the tumor and liver are determined. Then, estimation of tumor and liver tissue labels is done with the method of propagation of dependent constraints. By taking the distance between the obtained labels, the tumor boundary is obtained, and finally, the final boundaries of the tumor are determined by using the edge detector.


Changes in the number of initial points have little effect on the output results. In the CAP method, considering that the data estimation is done using the sampled points and estimates around these points, with any number of initial samples, the CAP method is able to produce the final results, which shows the high power of the CAP method in It is an estimate of the data.


The use of the watershed algorithm improves the segmentation of CT images of the liver with radiology.

Journal of Applied Biology, Volume:13 Issue: 2, 2024
35 to 58  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!