پیش بینی کوتاه مدت سرعت باد با استفاده از الگوریتم های یادگیری ماشین
تقاضای انرژی الکتریکی با توسعه صنعت به شدت افزایش یافته است، اما تامین آن از سوخت های فسیلی مشکلاتی مانند گرمایش زمین و آلودگی محیط زیست را به دنبال دارد. با توجه به محدودیت و کاهش منابع فسیلی، یافتن جایگزین های پایدار ضروری است. در این میان، انرژی باد به دلیل هزینه کم و عدم تولید آلودگی، به عنوان یک منبع تجدیدپذیر مناسب برای تامین انرژی الکتریکی مطرح می شود. با این حال، برای دستیابی به توان پایدار از نیروگاه های بادی، لازم است اطلاعات دقیقی از سرعت باد در آینده در دسترس باشد. پیش بینی سرعت باد به دلیل ماهیت تصادفی و متناوب آن بسیار دشوار است، در این مقاله، برای مقابله با این چالش و دستیابی به پیش بینی دقیق، از مدل ترکیبی شامل شبکه عصبی کانولوشنال موقتی و بازگشتی دوطرفه (TCN-BiLSTM) استفاده شده است. ابتدا، هایپرپارامترهای الگوریتم تجزیه حالت متغیر ، با استفاده از روش قدرتمند Optuna بهینه سازی شده اند. در مرحله بعد، داده های اصلی سرعت باد برای بهبود عملکرد مدل ترکیبی (TCN_BiLSTM) نرمالیزه شده و به الگوریتم تجزیه حالت متغیر داده شده اند تا به توابع مد ذاتی(IMF) تجزیه شوند. سپس هر IMFبه صورت جداگانه به مدل ترکیبی برای پیش بینی داده می شود. درآخر در نهایت، خروجی ها از حالت نرمال سازی خارج و ترکیب شده اند تا نتیجه نهایی به دست آید. با توجه به ارزیابی مدل ترکیبی با معیارهای آماری، نتایج نشان می دهد که مدل پیشنهادی دقت بالایی دارد. در این ارزیابی، ضریب تعیین برابر با 99.1٪، میانگین خطای مطلق برابر با 0.36 و ریشه میانگین مربعات خطا برابر با 0.48 به دست آمده است.
-
تشخیص وقوع خطای قطع فاز در خطوط انتقال متصل به ریزشبکه های مبتنی بر انرژی-های تجدیدپذیر
حمیدرضا صفا، *
نشریه فناوری های نوین مهندسی برق در سیستم انرژی سبز، بهار 1404 -
Assessing Power System Adequacy and Generation Expansion Planning in the Presence of Wind Power Plants Considering Uncertainties in the DIgSILENT Software Environment
Hamidreza Safa, Aliasghar Ghadimi *, Mohammadreza Miveh
Journal of Applied Research in Electrical Engineering, Winter and Spring 2024