ارزیابی عملکرد زنجیره تامین پایدار با استفاده از یادگیری ماشین و تحلیل پوششی داده شبکه ای

پیام:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:
صنعت پتروشیمی در ایران به عنوان صنعت مولد و یکی از پایه های اقتصاد کشور بوده و نظارت بر کارایی و عملکرد زنجیره تامین پایدار در این صنعت یکی از فاکتورهای مهم برای مدیران جهت تصمیم گیری و تنظیم راهبردهای کلان توسعه پایدار است. باتوجه به اینکه تحلیل پوششی داده شبکه ای برای ارزیابی کارایی نسبی بین واحدهای تحت بررسی یک روش پذیرفته شده و معتبر در تحقیقات دانشگاهی بوده، یکی از چالش ها این حوزه محاسبه کارایی نسبی بین واحدهای همگن و مشابه است. در این پژوهش بر اساس مدلسازی ریاضی با استفاده از تحلیل پوششی داده شبکه ای (NDEA) ضمن بهره گیری از یادگیری ماشین بهترین الگورتیم برای خوشه بندی زنجیره تامین دوسطحی بین 28 واحد پتروپالایشی فعال در ایران برای 90 دوره زمانی با رویکرد پایداری انتخاب و نتایج با روش سنتی محاسبه کارایی بدون خوشه بندی مقایسه گردید. نتایج مقایسه سه الگورتیم مختلف یادگیری ماشین در خوشه بندی نشان داد که الگوریتم Deep Embedded Clustering بر اساس شاخص های سه گانه ارزیابی کیفیت خوشه بندی، به میزان 10% از سایر الگورتیم ها کیفیت بهتری را بر روی مجموعه داده مورد مطالعه ارائه داده، ضمنا به صورت میانگین فاصله واحدهای ناکارا تا مرز کارایی خوشه خود به میزان 10 تا 20 درصد نسبت به محاسبه کارایی بدون خوشه بندی کاهش داشته است. این راهکار در تعیین برنامه بهبود عملیاتی تر برای واحدهای ناکارا بسیار مناسب است. همچنین مقایسه فاصله واحدهای ناکارا تا مرز کارایی در هر خوشه می تواند مبنای مناسب تری برای مقایسه کارایی واحدها در ارائه راهکار بهبود و سیاست گذاری های کلان مدیریتی در راستای توسعه محصولات در نظر گرفته شود. هدف این پژوهش نشان دادن تاثیر خوشه بندی در محاسبه کارایی نسبی است که از آن می توان برای ارزیابی کارایی سایر صنایع بهره جست.
زبان:
فارسی
صفحات:
109 تا 145
لینک کوتاه:
https://www.magiran.com/p2812555 
مقالات دیگری از این نویسنده (گان)