مدل سازی هوشمند پیش بینی نوسانات قیمت طلا
در پژوهش حاضر هدف شناسایی مهم ترین متغیرهای موثر بر نوسان قیمت طلا است. در تحقیق حاضر برای اولین بار در تحقیقات داخلی به مدل سازی نوسانات بازار بر اساس رویکردهای بیزین غیر خطی و شبکه عصبی عمیق پرداخته شده است.
روش شناسی پژوهش:
تحقیق حاضر کاربردی است و از داده های استاندارد و معتبر ماهانه ثبت قیمت طلا در بازه زمانی 2010 تا 2022 میلادی استفاده شده است. در این تحقیق 35 عامل موثر بر ایجاد نوسانات قیمت طلا مورد ارزیابی قرار گرفتند. در این مقاله از رویکرد مدل های گارچ و نوسان تصادفی جهت استخراج نوسان قیمت طلا و از مدل های TVPDMA، TVPDMS و BMA جهت شناسایی مهم ترین متغیرهای موثر بر ایجاد نوسان در این متغیر و از رویکرد یادگیری عمیق جهت بررسی نحوه اثرگذاری متغیرهای منتخب بر نوسانات قیمت طلا از نرم افزار SPSS و MATLAB بهره گرفته شده است.
بر اساس نتایج، مدل های SV نسبت به مدل های گارچ در استخراج نوسانات از دقت بالاتری برخوردارند. از میان مدل های TVPDMA ،TVPDMS و مدل BMA از دقت بالاتری برخوردار بود. بر اساس نتایج 12 متغیر موثر بر نوسان قیمت طلا شناسایی شدند. نتایج بیانگر این واقعیت هستند که عوامل داخلی موثر بر نوسانات قیمت طلا بیش از عوامل بیرونی بر این نوسانات اثرگذار می باشند. جهت پیش بینی نوسان قیمت طلا از سه الگوریتم شبکه عصبی پیچشی، حافظه کوتاه مدت ماندگار و شبکه عصبی پرسپترون چند لایه در حالت عمیق بهره گرفته شد. بر اساس نتایج این رویکرد نرخ بهره جهانی بالاترین تاثیر را بر نوسانات قیمت طلا و شاخص Pivot Point DeMark بالاترین سهم را در ایجاد نوسانات قیمت طلا دارد. از آزمون رگرسیون چرخشی برای ارزیابی استفاده شد.
اصالت/ارزش افزوده علمی:
بازار طلا، یکی از بازارهای پرتلاطم است که پیش بینی آینده آن می تواند در تصمیم گیری ها تاثیر مثبتی بر جای بگذارد. با آگاهی از قیمت طلا و پیش بینی صحیح آن می توان فرآیند تصمیم گیری خرید و فروش طلا در بازارهای جهانی را تسهیل و بهترین زمان اجرای معاملات و سرمایه گذاری ها را تعیین نمود؛ لذا پیش بینی صحیح قیمت طلا از جهات مختلف حایز اهمیت است. در این تحقیق اقدام به مدل سازی هوشمند پیش بینی نوسانات قیمت طلا نموده است.