نقشه برداری رقومی خاک با استفاده از تکنیک های یادگیری ماشین

پیام:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:

کاستی های روش های کلاسیک، ابداع سامانه اطلاعات جغرافیایی و تکنیک های سنجش از دور، ضرورت استفاده از نقشه برداری رقومی خاک را دوچندان نموده است. پژوهش حاضر برای بررسی توانایی تکنیک های یادگیری ماشین در توصیف پراکنش خاک ها در منطقه ای با وسعت حدود 5000 هکتار در غرب شهرستان هریس استان آذربایجان شرقی انجام شد. در این پژوهش از داده های بانک خاک، شامل ویژگی های فیزیکی و شیمیایی 50 خاکرخ و 50 مته که با استفاده از روش طبقه بندی تصادفی، حفر و تشریح شده بودند، استفاده شد. نتایج نشان داد که برای تمامی مدل های مورد مطالعه (رگرسیون درختی توسعه یافته، درخت تصمیم گیری تصادفی و شبکه های عصبی مصنوعی)، با پایین رفتن سطح رده بندی (از رده به گروه بزرگ)، مقادیر صحت عمومی کاهش یافت. از میان مدل های انتخابی، مدل رگرسیون درختی تعمیم یافته بالاترین کارایی را برای تخمین اکثر ویژگی های مورد مطالعه داشت، اما مناسب ترین مدل برای تخمین ویژگی های خاک، به طور حتم نمی تواند تخمین درستی از آن ویژگی های اراضی داشته باشد. از سوی دیگر، اگرچه مدل های مختلف از ویژگی های محیطی متفاوتی برای تخمین استفاده نموده اند، ولی اجزای اراضی، توانایی زیادی در تخمین ویژگی های خاک حتی در اراضی مسطح داشته اند. نتیجه گیری جامع و قطعی در مورد روش های نقشه برداری رقومی برای تخمین ویژگی های خاک در مناطق مسطح دارای ابهام است. شایان ذکر است که تخمین صحیح می تواند متاثر از تغییرپذیری ویژگی های خاک، مدل تخمین، تعداد نمونه های صحرایی و توانایی ویژگی های محیطی کاربردی در بیان تغییرات سطوح مختلف رده بندی باشد.

زبان:
فارسی
صفحات:
1 تا 14
لینک کوتاه:
https://www.magiran.com/p2815623