Investigating the hazards caused by land subsidence and its effect on historical sites using differential radar interferometric technique, case study: Ardabil Plain
The environmental consequences of land subsidence are destructive, costly and irreparable, and include creating cracks on the surface of the earth, damaging human structures such as building foundations, streets, bridges, roads, and power transmission lines. Sewage is destruction of irrigation systems and fertile agricultural soils and damage to ancient sites. Remote sensing methods, unlike mapping data and topographical maps, which are in physical contact with terrestrial phenomena, are without the slightest interference on terrestrial phenomena, and measuring and evaluating changes in phenomena are evaluated from a distance. Short receiving time and high spatial accuracy of radar images have made it used as a general and widely used tool to estimate land subsidence. According to the statistics announced in the country of Iran, the adverse effects caused by land subsidence are not a low number and are rapidly developing and spreading in different regions of the country. Leave irreparable damage. Ardabil plain, with its rich underground water resources and good soil, has always been of interest in the last half century and has been a suitable place for providing drinking water and agriculture. With the boom of agriculture from the 1960s onwards and as a result the excessive harvest from the aforementioned table since 1363, the aforementioned source began to decline and the continuation of this situation in the following years caused this plain to become more critical.
In order to carry out this research, the data of 22 piezometric wells in the Ardabil plain have been used. The time period used in this research is a 7-year period from 1395 to 1402. The method used for the data of this section is the BRF method, as one of the methods of radial functions, which is used due to its low error value and high accuracy. SAR images of the European Space Agency's Sentinel 1 satellite in SLC format and with vv polarization have been used to find out the changes in land subsidence in the Ardabil plain. The images used by the Sentinel 1 satellite (in c-band with a wavelength of 5.6 cm) are in the group of sensors with medium resolution in terms of spatial resolution. The radar interferometry method provides the possibility of producing a digital model of the ground height, whose optimal height accuracy for c-band data with a wavelength of 5.6 cm is about 5 meters. This method is able to reveal surface changes in the ground in different intervals with millimeter accuracy by using at least 2 or more radar images. In this method, an artificial interferogram is produced with the help of digital elevation model of the earth and conversion of height into phase, and in this way, with the help of reverse DEM data, the phase effect caused by topography is calculated and removed from the phase difference values. The remaining phase difference belongs to the effect of surface displacement and atmosphere.
The results of the investigation of piezometric wells in the area of Ardabil Plain show that the maximum drop in the underground water level is 48.77 meters in the southeast of Ardabil Plain and the lowest drop in the underground water level is 1.57 meters in the north. Eastern Ardabil plain was calculated. The amount of fluctuations in the water level of piezometric wells shows that the highest amount of fluctuations was in the area of Pirqavam wells, Arallovi Bozor and Khalil Abad lands. The lowest fluctuation was also observed in the area of Agchechai wells, Nojedeh. In the studied time period, the water level of Khalilabad piezometric well in 2015 was 2.96 meters, while in 1402, the water level in this area reached 46.3 meters. During 7 years, the water level has dropped by 43 meters, which indicates a critical situation in this sector. The lowest fluctuation of the water level is also for the Aghche-chai well. The land subsidence map of Ardabil plain shows that: the south-eastern parts of Ardabil city and also to some extent in the southern part have suffered ground subsidence due to the extraction of underground water. In the next order, the western parts of Ardabil city are prone to land subsidence. Based on this map, the maximum amount of ground subsidence has been calculated at around 598 mm in the area of Khalil Abad well. In the area of Khalil Abad well, the situation of underground water level drop is very critical and it has dropped by 43 meters during 7 years from 1395 to 1402. The overlapping results of the underground water level and co-depth curves with the results of radar interferometry show the accuracy of the findings in this section. Overlapping the location of the historical sites with the land subsidence map shows that, first of all, Tapraqlu hill (first millennium BC) is in the area of land subsidence with a rate of 250 mm.
The results of the application of this method revealed a very high level of land subsidence for the Ardabil plain (598 mm during a 7-year period). The southeastern areas of Ardabil plain have found a critical situation in recent years due to unprincipled exploitation and lack of proper management. Overlapping the location of the historical sites with the land subsidence map showed that Taparaglu hill with a rate of 250 mm and Ozrik Tepe-si with a rate of 69 mm are in the area of land subsidence, respectively. The three historic sites of Qala-Bovini, Niar Tepesi and Tezre Tepesi are also located in the area prone to land subsidence with rates of 27 mm, 46 mm and 49 mm, respectively. The cause of land subsidence in the Ardabil plain, according to the studies conducted on the changes in the underground water level, is the excessive exploitation of the underground water resources for the cultivation of agricultural products and providing the possibility of compaction of the underlying layers. In general, it can be said that the research results indicate the involvement of historical sites in the area of land subsidence.
-
Soil Erosion Hazard Assessment and Its Relationship with Environmental Factors (A Case Study of the Virmooni Watershed, Guilan Province)
Tayebe Babaei Olam, *
Journal of Geography and Human Relations, -
Investigating the lateral erosion of Darehroud river and its classification using Rasgen model (Case study: Horand city - East Azerbaijan)
*, Payam Fateh Elahi, Behrouz Nezafattakle
Journal of Geography and Environmental Hazards,