M. Eftekhari, S. D. Katebi
Designing an effective criterion for selecting the best rule is a major problem in the process of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidence and support or combined measures of these are used as criteria for fuzzy rule evaluation. In this paper new entities namely precision and recall from the field of Information Retrieval (IR) systems is adapted as alternative criteria for fuzzy rule evaluation. Several different combinations of precision and recall are redesigned to produce a metric measure. These newly introduced criteria are utilized as a rule selection mechanism in the method of Iterative Rule Learning (IRL) of FLC. In several experiments, three standard datasets are used to compare and contrast the novel IR based criteria with other previously developed measures. Experimental results illustrate the effectiveness of the proposed techniques in terms of classification performance and computational efficiency.
Iranian journal of fuzzy systems, Volume:3 Issue:1, 2006
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!