Use of Arti cial Neural Networks in Predicting Highway Runo Constituent Event Mean Concentration
In this paper، the large amount of highway runo characterization data that were collected in California، during a 3-year monitoring season (2000-2003)، were assessed in order to develop an Arti cial Neural Network (ANN) model for predicting the Event Mean Concentration (EMC) of the constituent. The initial data analysis performed by a Multiple Linear Regression (MLR) model revealed that the Total Event Rainfall (TER)، the Cumulative Seasonal Rainfall (CSR)، the Antecedent Dry Period (ADP)، the contributing Drainage Area (DA) and the Annual Average Daily Trac (AADT) were among the variables having a signi cant impact on the highway runo constituent EMC. These parameters were used as the basis for developing an Arti cial Neural Network (ANN) model. The ANN model was also used to evaluate the impact of various site and storm event variables on highway runo constituents'' EMCs. The ANN model has proven to be superior to the previously developed MLR model، with an improved R2 for most constituents. Through the ANN model، one was able to see some non-linear e ects of multi variables on pollutant concentration that، otherwise، would not have been possible with a typical MLR model. For example، the results showed that copper EMC is more sensitive at higher Annual Average Daily Trac (AADT)، with respect to ADP، compared with lower range AADT.
Scientia Iranica, Volume:15 Issue: 3, 2008
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!