SERIAL INTEGRATION OF PARTICLE SWARM AND ANT COLONY ALGORITHMS FOR STRUCTURAL OPTIMIZATION
Author(s):
Abstract:
The main objective of this study is to hybridize particle swarm optimization (PSO) and antcolony optimization (ACO) algorithms to propose an efficient algorithm for optimal designing of truss structures. Two types of serial integration of the algorithms are studied. In the first one, PSO is employed to explore the design space, while ACO is utilized to achieve a local search about the best solution found by PSO. This is denoted as serial particle swarm ant colony algorithm (SPSACA). In the second one, ACO works as the global optimizer while PSO acts as the local one. This is called as serial ant colony particle swarm algorithm (SACPSA). A number of structural optimization benchmark problems are solved by the proposed algorithms. Numerical results indicate that the SPSACA possesses better computational performance compared with the SACPSA and other existing algorithms.
Language:
English
Published:
Asian journal of civil engineering, Volume:13 Issue:1, 2011
Page:
127
magiran.com/p906131  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!