Prediction and Identification of Nonlinear Rotary Cement Kiln System with Neuro-Fuzzy ANFIS Network by Using Feature Selection with Genetic Algorithm
Message:
Abstract:
Due to the status of Rotary Kiln Cements (RKCs) in different industries and lack of a mature model for these systems, identification and prediction of the Kiln system are necessary for any simulation and automation approaches. Intrinsically, RKCs are non-linear and time variant systems. This paper proposes a novel approach of using ANSFI to predict the status of a RKC system in a scale of few minutes in advance. Since the data used in this research has been extracted from a real system, pre-analysis of data is one of the critical parts of identification process. In addition to the system inputs, dynamic of the system which has been selected according to the LIPSCHITZ method with a system’s genuine delay are applied as inputs for Neural Network system with one step phase lag. Genetic algorithm has been utilized as a characteristic selection and phasor rules reduction method due to the existing challenges on the number of rules in phasor systems specifically with a large number of variables to be applied to the Neural Network. To verify the performance of the proposed identification and prediction method on a non-linear industrial system, simulation results have been carried out on a real data extracted from SAVEH Cement Company.
Language:
Persian
Published:
Journal of Control, Volume:5 Issue: 2, 2012
Page:
22
magiran.com/p945195  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.