پشتیبانی: ۰۲۱۹۱۰۹۰۸۹۱
support@magiran.com
تاریخ چاپ: ۱۴۰۴/۰۳/۳۱
این مقاله در «بانک اطلاعات نشریات کشور» به نشانی magiran.com/p1553204
نمایه شده است. برای مطالعه متن آن به سایت مراجعه کنید.
مدل سازی دبی ماهانه ورودی به مخزن سد جامیشان با مدلهای خودهمبسته با میانگین متحرک تجمعی و سامانه استنتاج فازی -عصبی انطباقی
نویسنده(گان): حمید معینی*، حسین بنکداری، سیداحسان فاطمی، عیسی ابتهاج
کلیدواژگان: استوکستیک، دبی، مدلسازی
زبان: فارسی
انتشار در: نشریه دانش آب و خاک، سال بیست و ششم شماره ۲ (بهار ۱۳۹۵)
صفحات: ۲۷۳ -۲۸۵
نسخه الکترونیکی: متن این مقاله در سایت مگیران قابل مطالعه است.
Modeling the Monthly Inflow to Jamishan Dam Reservoir Using Autoregressive Integrated Moving Average and Adaptive Neuro- Fuzzy Inference System Models
Author(s): H. Moeeni*، H. Bonakdari، Se Fatemi، I. Ebtehaj

Abstract:

Hydrological time series modeling is one of the most important issues in water resource management. In this paper monthly inflow to Jamishan dam reservoir in Kermanshah province (west of Iran) is modeled by AutoRegressive Integrated Moving Average (ARIMA) and Adaptive Neuro-Fuzzy Inference System (ANFIS) models. These models are based on stochastic and Artificial Intelligence (AI) methods, respectively. For modeling up to five parameters in the ARIMA model were used and produced 1296 models which were fitted on the time series. In ANFIS model 14 input combinations were defined using the discharges with different lags. Two states of Grid Partitioning (GP) and Subtractive Clustering (SC) were used in Fuzzy Interface System (FIS) generation. Also, in training network Back Propagation (BP) and hybrid algorithms were used. Monthly modeled discharges were compared in the ARIMA and ANFIS models by some indexes such as Mean Absolute Relative Error (MARE) index which was obtained 0.398 and 0.8 for each model, respectively. The result showed that the ARIMA model was much more accurate than ANFIS model in modeling low discharges and also in short and long times modeling.
Keywords: ANFIS، ARIMA، Inflow، Modeling، Stochastic
Language: Persian
Published: Journal of Soil and water knowledge, Volume:26 Issue: 2, 2016
Pages: 273 -285
Full text: PDF is available on the website.