فهرست مطالب

Polyolefins Journal
Volume:2 Issue: 2, Spring 2015

  • تاریخ انتشار: 1394/06/19
  • تعداد عناوین: 6
|
  • Toshiaki Funako, Patchanee Chammingkwan, Toshiaki Taniike, Minoru Terano Pages 65-71
    In Ziegler-Natta olefin polymerization, the pore architecture of catalysts plays a crucial role in catalytic performances and polymer properties. While the type of preparation routes (such as chemical reaction and solution precipitation) greatly affects the catalyst pore architecture as a result of different solidification mechanisms, the modification of the pore architecture within a given route has been hardly achieved. In this study, we propose a simple way to vary the pore architecture of Mg(OEt)2-based Ziegler-Natta catalysts by the addition of a second alcohol. It was found that the addition of a second alcohol during Mg(OEt)2 synthesis affected not only the morphology of Mg(OEt)2 macroparticles but also the shape of building units. The degree of alternation was found to be sensitive to the molecular structure of a second alcohol. Noticeable influences were observed in the case of branched alcohols, where the transformation of plate-like building units to cylindrical ones led to the generation of totally different pore size distributions of resultant catalysts.
    Keywords: Ziegler, Natta catalysts, pore architecture, magnesium alkoxide
  • Gholam, Reza Nejabat, Mehdi Nekoomanesh, Hassan Arabi, Hamid Salehi, Mobarakeh, Gholam, Hossein Zohuri, Mohammad, Mahdi Mortazavi, Saeid Ahmadjo, Stephen A. Miller Pages 73-87
    Several types of hybrid catalysts are made through mixing of 4th generation Ziegler-Natta (ZN) and (2-PhInd)2ZrCl2 metallocene catalysts using triethylaluminum (TEA) as coupling agent. Response surface methodology (RSM) is used to evaluate the interactive effects of different parameters including amounts of metallocene and TEA and temperature on metallocene loading. Analyzing the amounts of Al and Zr elements in the hybrid catalysts through ICP-OES and EDXA reveals that temperature plays a crucial role on anchoring of the metallocene catalyst on ZN while TEA has the least determining effect. The ICP analysis shows that as the concentration of Al goes up in the hybrid catalyst the concentration of Zr passes a maximum, while EDXA shows a direct relationship between the Al and Zr contents. Using triisobutylaluminum (TIBA) and methylaluminoxane (MAO) as the coupling agents, almost similar metallocene loadings are observed. Finally, the performance of hybrid catalysts is investigated in propylene polymerization and the obtained polymers are characterized using DSC and DMTA through which the presence of two types of polymers in the final product are confirmed.
    Keywords: Hybrid catalysts, Ziegler, Natta, Metallocene, Surface, bulk analysis, polypropylene
  • Nickolay M. Ostrovskii, Ladislav Fekete Pages 89-97
    The olefins polymerization process in a slurry reactor is discussed. The reaction rate dynamics was analyzed and the contributions of feed flow, gas-liquid mass transfer, polymerization reaction, and catalyst deactivation were estimated. The propylene solubility in a solvent mixture “heptane” was calculated using Soave-Redlich-Kwong equation of state. These data were then approximated by Henry-like equation and the results were verified in experiments. The influence of propylene dissolving in ”heptane which was examined in special experiments without catalyst has provided the independent estimation of gas-liquid mass transfer coefficient. It has been shown that the reaction rate during the first 20-30 min of test is much lower (or higher) than total monomer consumption, depending on reactant addition sequence. The method of kinetic experiments interpretation and corresponding mathematical model are proposed. The method enables to estimate the kinetic parameter of monomer dissolution, the reaction rate constant of polymerization, as well as the parameters of active centers transformation – activation, deactivation and self-regeneration. An adequacy of model was proved by the description of experiments at two different pressures but with the same parameters values.
    Keywords: reaction dynamics, propylene polymerization, catalyst testing
  • Sepideh Gomari, Ismaeil Ghasemi, Mohammad Karrabi, Hamed Azizi Pages 99-108
    Nanocomposites based on polyamide 6 (PA6) and poly(ethylene-co-1-butene)-graft-maleic anhydride (EB-g- MAH) blends have been prepared via melt mixing. The effect of blend ratio and organoclay concentration on the crystallization and melting behavior of specimens were studied. Three types of commercial organo-modified clay (Cloisite 30B, Cloisite 15A and Cloisite 20A) were employed to assess the importance of the nanoclay polarity and gallery distance. The crystallization behavior was investigated using differential scanning calorimetry (DSC) and wide angle X-ray diffraction spectroscopy (WAXD). The strong interactions between amine end groups of PA6 and maleic anhydride groups of EB-g-MAH led to complete inhibition of EB-g-MAH crystallization according to the DSC results. A transformation from the α form to the γ form crystals of PA6, induced by both organoclays and EB-g-MAH, was monitored by WAXD and DSC. Small angle X-ray scattering (SAXS) was used to evaluate the morphology of nanocomposites. Moreover, transmission electron microscopy (TEM) was conducted to determine the location of organoclays and indicated that the organoclays mainly present in the PA6 matrix and rarely distribute in the EB-g-MAH phase in the case of low polarity organoclays. It was also evidenced that the organoclay with the most affinity to PA6 (Cloisite 30B) had the largest effect on the thermal and crystallization behavior of this phase in the blend.
    Keywords: polyamide 6, polyolefin elastomer, organoclay, crystallization, morphology
  • Jalil Morshedian, Yousef Jahani, Farshad Sharbafian, Foroogh Sadat Zarei Pages 109-119
    HDPE monofilaments were obtained using different extruders and drawn by post-extruder equipments. After solidification, drawn and undrawn monofilaments (draw ratio 7:1) were irradiated with 10 MeV electron beams in air at room temperature at 25, 50, 75, 100 and 125 kGy dose ranges to induce a network structure. HDPE crosslinking was studied on the basis of gel content measurements. The fibers were examined by differential scanning calorimetry (DSC) and measurements of mechanical properties.
    It was noted that gel fraction increased with irradiation dose up to 75 kGy and showed a significant increase with draw ratio, but at higher doses remained without considerable change. Melting temperature of drawn fiber increased with raising irradiation dose but decreased in undrawn sample. Also a bimodal endotherm peak was observed for drawn polyethylene irradiated in air.
    The changes in melting temperature and appearance of bimodal endotherm were related to the radiation chemistry of polyethylene in the presence of oxygen and interlamellar interactions. Heat of fusion and degree of crystallinity slightly increased for undrawn and drawn samples but, heat of crystallization was reduced by increasing irradiation dose due to increase the degree of crosslinking. Results of mechanical properties reveal that no significant changes seen in Young’s modulus by increasing irradiation dose. As a result of oxidative degradation happened by presence the oxygen molecules during the irradiation process, tensile properties of irradiated fibers decreased but elongation at yield for undrawn and elongation at break for drawn fibers boosted by increasing irradiation dose up to 125 kGy.
    Keywords: polyethylene fiber, electron beam, crosslinking, draw ratio
  • Marzieh Nouri, Mahmoud Parvazinia, Hassan Arabi, Mohsen Najafi Pages 121-133
    A two-dimensional (2D) single particle model for the copolymerization of propylene-ethylene with heterogeneous Ziegler-Natta catalyst is developed. The model accounts for the effects of the initial shape of the catalyst and carck/ pore patterns on the copolymer composition, polymerization rate and the average molecular weight properties. The spherical and oblate ellipsoidal shapes of catalyst particle and four different pattern distributions of cracks and pores in a growing particle are studied in this simulation. It is assumed that the diffusion coefficient of monomers in the cracks/pores is 10 times higher than the compact zone of the particle.In other word, the cracks are distinguished from parts with higher monomer diffusion coefficient.The dynamic 2D monomer diffusion-reaction equation is solved together with a two-site catalyst kinetic mechanism using the finite element method. Simulation results indicate that the initial shape of catalyst changes the average copolymer composition only in the early stage of polymerization, but the crack/pore patterns in the growing particle have a strong impact on the copolymer composition in the polymer particles due to the change ofmass transfer limitations.
    Keywords: single particle, modelling, finite element method, Polyolefin, copolymerization