فهرست مطالب

Nanomedicine Journal - Volume:6 Issue: 2, Spring 2019

Nanomedicine Journal
Volume:6 Issue: 2, Spring 2019

  • تاریخ انتشار: 1398/01/10
  • تعداد عناوین: 9
|
  • Faisal Qaisar* , Anum Habib, Maira Riaz, Zia Ur Rehman Pages 75-84
    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in CFTR genes that affect chloride ion channel. The CF is a good nominee for gene therapy as the asymptomatic carriers are phenotypically normal, and the desired cells are accessible for vector delivery. Gene therapy shows promising effects involving the correction of gene or replacement of the mutant gene with the functional one. Accordingly, various viral and non-viral carriers have been investigated. Although viral vectors are efficient, they have some problems, including mutagenesis, host immune response, higher toxicity, and costliness. On the other hand, non-viral vectors have less toxicity and immunogenic response and are easier to prepare. For a successful gene therapy, the cargo must be delivered to the target site. However, various barriers are faced by non-viral vectors, which make the gene delivery to the target site difficult. Extracellular barrier, which is the first barrier, include nucleases, negatively charged serum proteins, blood cells, and activated immune system. Ciliated epithelium, mucus gel, apical surface glycocalyx, and plasma membrane come in the second category of the barriers. Furthermore, the third category, which is related to the intracellular barriers, includes endosome and lysosome, cytoplasmic nucleases, viscous environment of cytoplasm with different proteins, and finally nuclear membrane. Various approaches have been proposed to increase the systematic delivery of vectors and enhance their efficiency. Some of these approaches include surface coating with inert polymers, modification of surface charge with anionic polymers, and enhancement of endocytosis and reduction of toxicity by using polyethylene glycol. This review paper was conduct to highlight the barriers faced by non-viral vectors when carrying a genetic payload to the lungs. This study also involved the investigation of the strategies and different types of modifications targeted toward the improvement of the efficiency of non-viral vectors.
    Keywords: Cystic fibrosis, CFTR gene, Non-viral vectors, PEG
  • Shittu Oluwatosin Kudirat* , Abdulrasheed Tawakalitu, Abdulkareem A. Saka, Abubakre O. Kamaldeen, Bankole Mercy T, Tijani, Jimoh Oladejo Pages 85-99
    Objective(s)
    Drug delivery is an engineering technology to control the release and delivery of therapeutic agents to target organs, tissues, and cells. Metallic nanoparticles, such as gold nanoparticles (AuNPs) have exceptional properties which enable efficient drug transport into different cell types with reduced side effects and cytotoxicity to other tissues.
    Materials and Methods
    AuNPs were synthesized by adopting the Turkevich method to reduce tetra chloroauric (III) acid (HAuCl4) solution with sodium citrate. A factorial design of 24 was used to investigate the influence of temperature, stirring speed, and the volume of citrate and gold salt on the size of AuNPs synthesis. The produced chemical-AuNPs (CN-AuNPs) were characterized using ultraviolet-visible spectroscopy and dynamic light scattering (DLS) which was conjugated with polyethylene glycol (PEG) loaded with chloroquine diphosphate. The latter were characterized with transmission electron microscopy (TEM), Energy dispersive x-ray spectroscopy (EDS), selected area electron diffraction (SAED) patterns and Fourier transmission infrared spectroscopy. The antimalarial activities of the three formulations were tested on Plasmodium-infected mice. Moreover, the evaluation of curative potentials of the formulations was carried out via parasite counts. The anemic and pathological conditions of nano-encapsulation were investigated for their cytotoxicity level.
    Results
    The CN-AuNPs show surface plasmon resonance absorption ranging from 526 to 529 nm with smaller particle size at the lower citrate volume. The TEM image of CN-AuNPs with polyethylene glycol (PEG) and CN-AuNPs-PEG encapsulated with chloroquine diphosphate revealed spherical shape with EDS showing the appearance of gold (Au) at 2.0, 2.1, and 9.9 KeV. The SAED also revealed that the AuNPs were crystalline in nature. The in vitro time-dependent encapsulation release showed an extension of time release, compared to CN-AuNPs-PEG with parasitemia clearance at the same level of cytotoxicity.
    Conclusion
    Therefore, although improved activity of the CN-AuNPs-PEG encapsulating was achieved but its cytotoxicity still is a limitation.
    Keywords: Chemical synthesis, Characterization, Chloroquine diphosphate, Encapsulation, Gold Nanoparticles
  • Maryam Rezaeizadeh, Mehdi Ranjbar *, Abbas Pardakhty Pages 100-104
    Objective (s)
     SrCO3 nanoparticles could be used as new biomedical sources in magnetic resonance imaging as a promising noninvasive imaging modality for the preoperative staging of breast cancer and monitoring of tumor response to therapy. The present study aimed to synthesize SrCO3 nanostructures using microwave irradiation in the presence of honey as a green capping agent and reductant.
    Materials and Methods
    The optical properties of SrCO3 nanostructures were investigated using ultraviolet-visible (UV-Vis) spectroscopy. Sr(NO3)2.6H2O and NaOH were applied as the starting reagents. Fructose (32.56-38.2%) and glucose (28.54-31.3%), which were the main carbohydrates found in honey, were not only involved in stabilization, but they also acted as the reducing agents in the production of SrCO3 nanostructures. The produced nanostructures were characterized using X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy.
    Results
    Method of synthesis and chemical reagents were observed to affect the structural parameters, crystallite size, product size, morphology, and antioxidant activity.
    Conclusion
    According to the results, honey could be used as a green capping agent and reductant for the synthesis of SrCO3 nanostructures as a novel structure to co-deliver therapeutic agents using photo-thermal agents. Moreover, honey has significant potential for diagnostic and therapeutic purposes in the future.
    Keywords: Capping Agent, Drug carriers, Photodynamic Therapy, SrCO3 NPs
  • Hanif Kazerooni, Amirhossein Bahreyni , Mohammad Ramezani, Khalil Abnous, Mohammad Taghdisi* Pages 105-111
    Objective (s)
     In light of misuse of antibiotics in animal husbandry and their side effects on human health, there is an argent need to develop simple and rapid methods for determining the quantification of antibiotics in biological systems.
    Materials and Methods
    In this work a facile and ultrasensitive colorimetric aptasensor was reported for detection of oxytetracycline (OTC) in water and milk samples employing OTC-short aptamer and gold nanoparticles (AuNPs).
    Results
    In the presence of OTC, the interaction between OTC and its aptamer leads to the separation of OTC aptamer from the surface of AuNPs which is followed by the aggregation of AuNPs by salt, showing an evident color change from red to blue. On the contrary, in the absence of OTC, the attachment of aptamer on the surface of AuNPs can protect AuNPs against salt-induced aggregation with a wine-red color. The proposed aptasensor exhibits excellent sensitivity for detection of OTC with linear range between 20 to 2000 nM with limit of detection (LOD) as low as 10 nM. Furthermore, this strategy was applied to detect OTC in spiked milk samples and presented satisfying linear range from 25 to 1500 nM with the LOD of 20 nM.
    Conclusion
    Owing to demonstrating appropriate sensitivity and selectivity, the designed biosensor can be considered as a promising tool to be applied in the field of biomedicine and food safety.
    Keywords: Aptasensor, colorimetry, Gold Nanoparticle, Oxytetracycline
  • Elaheh Sadat Mirkamali, Roya Ahmadi *, Khadijah Kalateh, Goldasteh Zarei Pages 112-119
    Objective (s)
     The present study aimed to assess the adsorption of fullerene C24 with Melphalan anticancer agent in a solvent phase (water) at the B3LYP/6-31G (d) theoretical level.
    Materials and Methods
    Initially, the structures of Melphalan and fullerene complexes were optimized in four configurations. Afterwards, IR calculations and molecular orbital analysis were performed. In addition, some important parameters were assessed, including the adsorption energy, Gibbs free energy changes (ΔGad), enthalpy (ΔHad) variations, thermodynamic equilibrium constant, specific heat capacity, chemical hardness, energy gap, and electrophilicity.
    Results
    According to the results, Gibbs free energy changes (ΔGad), enthalpy (ΔHad) variations, III-Isomer, and IV-Isomer were negatives at various temperatures, while for I-Isomer and II-Isomer were positives throughout the temperature range of 298.15-310.15 K.
    Conclusion
    Since according to the obtained results for adsorption of Melphalan on the C24 in , III-Isomer, and IV-Isomer were spontaneous at various temperatures, while I-Isomer and II-Isomer were not spontaneous throughout the temperature range of 298.15-310.15 K.
    Conclusion
    Since the adsorption of Melphalan with fullerene C24 is spontaneous. Moreover, the effects of temperature on thermodynamic parameters were investigated, and the calculated specific heat capacity values indicated that C24 could be utilized as a sensing material in the construction of thermal biosensors for Melphalan determination.
    Keywords: Anticancer Drug, adsorption, Density functional theory, Drug Delivery, Fullerene (C24), Melphalan
  • Azadeh Hekmat *, Mohaddeseh Rabizadeh, Maliheh Safavi, Zahra Hajebrahimi Pages 120-127
    Objective (s)
    Gravity could affect some system features and perform directly as an organizing field factor. Recent investigations have examined the titanium dioxide nanoparticles (TiO2 NPs) in biomedical applications, mostly in the cancer treatment field. This study aimed to evaluate the effects of simulated microgravity combined with TiO2 NPs in MDA-MB-231 cells proliferation for the first time. In other words, this study examined the utility of the microgravity environment in nano-therapy.
    Materials and Methods
    The MDA-MB-231 human breast cancer cell line and TiO2 NPs were purchased. The 2D clinostat was applied for the simulation of the microgravity. The morphological studies, MTT cytotoxicity assay, Acridine orange/Ethidium bromide double staining studies and flow cytometry analysis were utilized.
    Results
    The MTT assay, the morphological studies, Acridine orange/Ethidium bromide double staining studies and flow cytometry analysis confirmed the apoptosis-inducing effect of microgravity in combination with TiO2 NPs. The IC50 of simulated microgravity in the presence of TiO2 NPs was determined to be 130 µM. Furthermore, MDA-MB-231 cells exposed to microgravity adopted a different phenotype.
    Conclusion
    Based on our observation, although the relative mechanisms need to be explored further, microgravity can strictly affect the TiO2 NPs effects on MDA-MB-231 cells. The significance of this study lied in the fact that simulating microgravity can be a powerful physical cure for cancer therapy and open new horizons for the studies in the field of biology, biophysics, and medicine.
    Keywords: Flow cytometry analyses, MDA-MB-231 cells, Simulated microgravity, Titanium dioxide nanoparticles
  • Zohreh Parang* , Mojdeh Parsaeian, Davood Moghadamnia Pages 128-135
    Objective(s)
    This study aimed to compare impacts of silver nanoparticles and silver cobalt nanoparticles on the hepatic function tests and changes in liver tissues in adult male rats.
    Materials and Methods
    This study was conducted on 49 adult male Wistar rats, each weighing approximately 180-220 gr. The rats were randomly assigned to seven groups of seven including one control group and six experimental groups. The experimental groups 1 and 2 respectively received 25 and 100 mg/kg of silver nanoparticles synthesized for 75 sec intraperitoneally for 14 days. Experimental group 3 received silver nanoparticles that were synthesized at 300 sec which were administered intraperitoneally in a 25 mg/kg dose for 14 days. The experimental groups 4 and 5 received silver cobalt nanoparticles, whereby silver nanoparticles were synthesized at 75 sec and were administered intraperitoneally in a 25 and 100 mg/kg dose for 14 days, respectively. Finally, experimental group 6 received a 25 mg/kg dose of silver cobalt nanoparticles, intraperitoneally for 14 days, with the silver nanoparticles synthesized for 300 sec. At the end of this period, the serum levels of hepatic enzymes, albumin, and total protein were measured and tissue changes were evaluated in this study.
    Results
    The mean serum levels of AST, total protein, and albumin in the experimental groups 1 and 3 increased significantly compared to the control group. Similarly, the mean serum levels of ALT and ALP in the experimental group 3 showed a significant increase in comparison with the control group. The mean of liver weight in all experimental groups was significantly higher than the control group(P<0.05). Furthermore, the necrosis of the liver tissue was observed in the recipients of silver nanoparticles. However, liver necrosis was not observed in the groups receiving silver cobalt nanoparticles.
    Conclusion
    The use of silver nanoparticles can boost the serum levels of hepatic enzymes and increase liver tissue necrosis, as well. However, the silver cobalt nanoparticles did not change the levels of hepatic enzymes and liver tissue.
    Keywords: Albumin, Hepatic enzyme, Rat, Silver nanoparticles, Silver Cobalt Nanoparticles
  • Mahsa Dalfardi, Mohammad Mohsen Taghavi, Mahdi Shariati Kohbanani, Zahra Taghipour, Reza Nosratabadi, Cyrus Jalili, Mohammad Reza Salahshoor, Ayat Kaeidi, Ahmad Shabanizadeh* Pages 136-141
    Objective (s)
     Silver nanoparticles (NPs) have attracted considerable attention owing to their important properties, including antimicrobial and anti-oxidative stress effects. However, high concentrations of silver NPs have been reported to have toxic effects. The present study aimed to evaluate the modulatory and protective effects of royal jelly (RJ) against the harmful effects of silver NPs on hippocampal functions, such as learning and memory.
    Materials and Methods
    This experimental study was conducted on 40 male Wistar rats. The animals were divided into four groups of 10, including the control group (no silver NPs and RJ), RJ group, silver NPs plus RJ, and silver NPs. Some functions of the hippocampus (e.g., learning and memory) were evaluated using Morris memory function tests for four consecutive days. In addition, the relative expression of TRPV1 was assessed using real-time polymerase chain reaction (RT-PCR). At the final stage, hippocampal tissues were collected for histological studies.
    Results
    Levels of learning and memory, relative gene expression ratio of TRPV1, and the histological changes in the hippocampus were significantly different in the groups receiving silver NPs compared to the groups administered with RJ.
    Conclusion
    According to the results, RJ may be the effective in the protection against the adverse effects of silver NPs and improve the function of the hippocampus.
    Keywords: Hippocampus, Memory, Royal jelly, Silver-nanoparticles, TRPV1
  • Shima Nazarzade, Hamid Reza Ghorbani* Pages 142-146
    Objective(s)
    Antibacterial and antifungal nanocomposites are widely used in food packaging and pharmaceutical and medicine industries. Among the polymers of these nanocomposites, epoxy coatings are commonly used for health and industrial applications. The present study aimed to synthesize CuO nanoparticles using the chemical reduction method and characterized them by ultraviolet-visible (UV-Vis) spectroscopy and dynamic light scattering (DLS) analysis.
    Materials and Methods
    The nanoparticles were synthesized with the mean size of 45 nanometers. Following that, the CuO/epoxy nanocomposite were prepared in three concentrations of 1%, 3%, and 5% of the CuO nanoparticles. The results of X-ray diffractometry (XRD) and scanning electron microscopy (SEM) confirmed the presence of nanoparticles on the nanocomposite surface. In addition, the disc-diffusion method was used to assess the antifungal properties of the nanocomposites.
    Results
    The results of XRD and SEM confirmed the presence of CuO nanoparticles on the nanocomposite surface. The optimal nanocomposite concentration for the maximum antifungal activity was 3%.
    Conclusion
    It seems that the CuO nanoparticles could be used to provide antifungal nanocomposites, which are applicable in medicine and food industries.
    Keywords: Antifungal, Coating, CuO-Epoxy Nanocomposites