فهرست مطالب

Optimization in Civil Engineering - Volume:9 Issue: 3, Summer 2019

International Journal of Optimization in Civil Engineering
Volume:9 Issue: 3, Summer 2019

  • تاریخ انتشار: 1398/01/11
  • تعداد عناوین: 10
|
  • M. Grigorian *, A. Biglari, M. Kamizi, E. Nikkhah Pages 373-393
    The research leading to this paper was prompted by the need to estimate strength and stiffness of Rigid Rocking Cores (RRCs) as essential elements of resilient earthquake resisting structures. While a limited number of such studies have been reported, no general study in terms of physical properties of RRCs, their appendages and adjoining structures have been published. Despite the growing knowledge on RRCs there are no design guidelines on their applications for seismic protection of buildings. The purpose of the present article is to propose effective rigidity limits beyond which it would be unproductive to use stiffer cores and to provide basic guidelines for the preliminary design of RRCs with a view to collapse prevention, re-centering and post-earthquake repairs/replacements. Several examples supported by computer analysis have been provided to demonstrate the applications and the validity of the proposed solutions.
    Keywords: sustainability, rocking core, re-centering, collapse prevention, reparability, cost efficiency
  • Gh. Asadzadeh Khoshemehr, H. Bahadori * Pages 395-410
    Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the seismic response of a site. Therefore, Artificial Neural Networks (ANNs) are reliable and practical estimation methods that can be used to analyze comprehensive measurements such as dominant period of a site, and improve the data. In this paper, the performance of ANNs has been investigated on calculation of the dominant period for a site. Three different models, namely BP, RBF and ANFIS, have been compared to determine the best model that provides the most accurate estimation for the dominant period. The input parameters have been chosen to be alluvial layer thickness, grain size, specific gravity, effective stress, shear wave velocity, standard penetration number, Atterberg limits. Each of the three models has been trained and tested for these input parameters and a unique output which is the dominant period of the site. The results showed that ANNs successfully model complex relationships between soil parameters and seismic parameters of the site, and provide a robust tool to accurately estimate the dominant period of a site. The accurate estimations can be then used for engineering applications including damage assessment and structural health monitoring. In addition, The obtained emulator of RBF model shows the least model error in estimation of dominant period and has been found to be superior to the other evaluated methods.
    Keywords: artificial neural network, dominant period, microtremor, geotechnical boreholes
  • D. Sedaghat Shayegan, A Lork *, S.A.H. Hashemi Pages 411-422
    In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. This algorithm uses the movement, dispersion and protection behavior of Mouth Brooding Fish as a pattern to find the best possible answer. The cost of the system is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. The performance of this algorithm is compared with harmony search (HS), colliding bodies optimization (CBO), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the MBF algorithm is able to construct very promising results and has merits in solving challenging optimization problems.
    Keywords: mouth brooding fish algorithm_cost optimization_meta-heuristic algorithms_one - way ribbed slabs.
  • M.M. Noruzi *, F. Yazdandoost Pages 423-435
    The excessive focus on water mounts a challenge to the sustainable development. Energy is another aspect that should be taken into account. Nexus approach is characterized by an equal emphasis on energy and water spheres. In arid areas, like the city of Kashan, Iran, non-conventional waters (e.g. desalinated and recycled waters) have been considered as an alternative resource of water. Nexus warns that alternative resources should be tapped in with consideration of the costs and environmental impacts of the energy. In this study, the allocation of demands and supplies in the basin are primarily modeled by WEAP. Then, the energy required to generate water is simulated by LEAP. Finally, using the optimization method, the desirable volume of non-conventional water is estimated. The results suggest that the maximum capacity of the non-conventional water is not necessarily the optimal point. Thus, despite high potentials for producing non-conventional water, caution should be practiced in setting proper limit for the production.
    Keywords: nexus approach, recycling, desalination, optimal point, genetic algorithm
  • S. Bakhshinezhad *, M. Mohebbi Pages 437-455
    In this paper, a procedure has been presented to develop fragility curves of structures equipped with optimal variable damping or stiffness semi-active tuned mass dampers (SATMDs). To determine proper variable damping or stiffness of semi-active devices in each time step, instantaneous optimal control algorithm with clipped control concept has been used. Optimal SATMDs have been designed based on minimization of maximum inter-story drift of nonlinear structure which genetic algorithm(GA) has been used to solve the optimization problem. For numerical analysis, a nonlinear eight-story shear building with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal variable damping and stiffness SATMDs have been developed for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive TMD. Numerical analysis has shown that for most range of intensity measure optimal SATMDs have been effective in enhancement of the seismic fragility of the nonlinear structures which the improvement has been more than passive TMDs. Also, it has been found that, although variable stiffness SATMD shows to be more reliable in lower mass ratios, however in higher mass ratios variable stiffness and damping SATMDs performs similarly to improve reliability of the structure.
    Keywords: fragility curves_reliability assessment_semi - active tuned mass dampers_variable damping SATMD_variable stiffness SATMD_genetic algorithm.
  • M. H. Bagherinejad, A. Haghollahi * Pages 457-482
    In this paper, topology optimization (TO) is applied to determine the form, size and location of holes for the special form of perforated steel plate shear wall (PSPSW). The proposed model is based on the recently presented particular form of PSPSW that is called the ring-shaped steel plate shear wall. The strain energy is selected as the objective function in the optimization. Simple Isotropic Material with Penalization (SIMP) method and the solution algorithms, including sensitivity and condition-based methods are utilized in the TO. Four initial plate forms are presented in the TO with regards to the length of the connection between the plate and column. Based on the solution methods and initial forms of the plate, eight scenarios are proposed and seven different perforated plates obtained using TO. The nonlinear responses of the optimized perforated plates are compared together, and with the ring-shaped model as a benchmark. The nonlinear analysis is conducted under cyclic and monotonic loadings. Key issues include cyclic and monotonic behavior, pinching behavior, stiffness, load-carrying capacity, energy dissipation, fracture tendency and out-of-plane deformation are investigated and discussed. The results demonstrate the optimized models have better behavior than the ring-shaped model without changing the volume of the plate.
    Keywords: topology optimization_perforated steel plate shear walls_SIMP method_sensitivity - based method_condition - based method.
  • M. Danesh, S. Gholizadeh *, C. Gheyratmand Pages 483-498
    The main aim of the present study is to optimize steel moment frames in the framework of performance-based design and to assess the seismic collapse capacity of the optimal structures. In the first phase of this study, four well-known metaheuristic algorithms are employed to achieve the optimization task. In the second phase, the seismic collapse safety of the obtained optimal designs is evaluated by conducting incremental dynamic analysis and generating fragility curves. Three illustrative examples including 3-, 6-, and 12-story steel moment frames are presented. The numerical results demonstrate that all the performance-based optimal designs obtained by the metahuristic algorithms are of acceptable collapse margin ratio.
    Keywords: structural optimization, performance-based design, incremental dynamic analysis, collapse margin ratio, steel moment frame.
  • M. Shahrouzi *, A. Barzigar, D. Rezazadeh Pages 499-523
    Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.
    Keywords: Opposition-based learning, truss structure, building frame, sizing design, geometry optimization, ground motion clustering.
  • H. Fazli * Pages 525-541
    In this paper, an optimization framework is developed for performance-based seismic design of composite moment frames consisting of concrete filled steel box columns and I-shaped steel beams. Material cost of the structure and seismic damage under severe earthquake ground motions are minimized as objective functions. Two design examples are presented to demonstrate the applicability and efficiency of the proposed method. Based on the obtained results, it is concluded that the proposed design optimization approach is capable of producing seismic designs of composite MRFs which are cost effective, provide reliable seismic performance and suffer less damage in the case of a severe earthquake ground motion.
    Keywords: Optimization, Performance-based design, Seismic design, Composite structure, Colliding Bodies Optimization
  • A. Kaveh *, M.R. Seddighian, E. Ghanadpour Pages 543-554
    Despite widespread application of grillage structures in many engineering fields such as civil, architecture, mechanics, their analysis and design make them more complex than other type of skeletal structures. This intricacy becomes more laborious when the corresponding analysis and design are based on plastic concepts. In this paper, Finite Element Method is utilized to find the lower and the upper bounds solutions of rectangular planner grids and this method is compared with analogues Finite Difference Method to indicate the efficiency of proposed approach.
    Keywords: grid structures, plastic design, finite element method, finite difference method