فهرست مطالب

Nanomedicine Journal - Volume:6 Issue:4, 2019
  • Volume:6 Issue:4, 2019
  • تاریخ انتشار: 1398/07/09
  • تعداد عناوین: 10
|
  • Mona Malek *, Fatemeh Farzaneh, Yasaman Samani, Fatemeh Pachenari, Hamid Pachenari Pages 241-249
    Nanotechnology has various applications in restorative dentistry in order to achieve reliable treatment outcomes. The present study aimed to comprehensively review the studies focused on the applications of nano-based materials, technologies, and methods used in restorative dentistry. Related articles were retrieved via searching in databases such as PubMed, Google Scholar, and Scopus. Afterwards, the appropriate references regarding the research subject were assessed, and findings were collected to achieve a comprehensive review study. According to the obtained results, the utilization of nanotechnology in restorative dentistry could yield beneficial outcomes. The dispersion of nano-sized structures in restorative materials could enhance mechanical properties such as diametral and flexural strength and fracture toughness. However, the improvement of the mentioned mechanical properties depends on the type of the nano-sized materials, their content, and type of the additional materials used along with nano-based restorative materials.
    Keywords: Composite, Mechanical properties, Nanotechnology, Restorative dentistry
  • Soheila Kashanian *, Ronak Rafipour, Kamran Mansouri, Hasanain Gomhor Pages 250-257
    Objective(s)

    Nanocarriers are drug delivery vehicles, which have attracted the attention of researchers in recent years, particularly in cancer treatment. The encapsulation of anticancer drugs using protein nanocages is considered to be an optimal approach to reducing drug side-effects and increasing the bioavailability of anticancer drugs. Epirubicin (EPR) is an active chemotherapeutic medication used in the treatment of breast cancer. However, the toxicity of this drug against normal cells is a considerable limitation in therapy. EPR toxicity could be reduced using nanocarriers and dual-targeted drug delivery. Dual-targeted drug delivery system was developed by the conjugation of dopamine (DA) with horse spleen apoferritin (HsAFr)-encapsulated EPR to overcome the limitations of chemotherapeutic EPR in breast cancer treatment. HsAFr-EPR-DA complexes could target the scavenger receptors, transferrin receptors 1, and DA receptors, which are overexpressed on breast cancer cells.

    Materials and Methods

    UV-Visible, fluorescence, and circular dichroism (CD) spectroscopic techniques and transmission electronic microscope (TEM) have been applied to characterize HsAFr-EPR-DA complexes. In the present study, we utilized human breast cancer cell line (MCF-7), aiming to compare the cytotoxicity of HsAFr-EPR-DA complexes to free EPR.

    Results

    The toxicity was measured using the MTT assay, which demonstrated that the dual-targeted nanocarrier (HsAFr-EPR-DA) enhanced cytotoxicity against MCF-7 more significantly compared to non-targeted nanocarriers.

    Conclusion

    The findings of the current research indicated that the synthesized HsAFr-DA complex was an optimal nanocarrier for the dual-targeted delivery of anticancer drugs.

    Keywords: Dopamine, Drug Delivery, Dual Targeting, Epirubicin, Horse Spleen Apoferritin Nanocage
  • Majid Darroudi *, Niloofar Khandakhandan Nasab, Himen Salimizand, Alireza Dehnad Pages 258-262
    Objective(s)
    Drug delivery is an engineering technology to control the release and delivery of therapeutic agents to target organs, tissues, and cells. Metallic nanoparticles, such as gold nanoparticles (AuNPs) have exceptional properties which enable efficient drug transport into different cell types with reduced side effects and cytotoxicity to other tissues.
    Materials and Methods
    AuNPs were synthesized by adopting the Turkevich method to reduce tetra chloroauric (III) acid (HAuCl4) solution with sodium citrate. A factorial design of 24 was used to investigate the influence of temperature, stirring speed, and the volume of citrate and gold salt on the size of AuNPs synthesis. The produced chemical-AuNPs (CN-AuNPs) were characterized using ultraviolet-visible spectroscopy and dynamic light scattering (DLS) which was conjugated with polyethylene glycol (PEG) loaded with chloroquine diphosphate. The latter were characterized with transmission electron microscopy (TEM), Energy dispersive x-ray spectroscopy (EDS), selected area electron diffraction (SAED) patterns and Fourier transmission infrared spectroscopy. The antimalarial activities of the three formulations were tested on Plasmodium-infected mice. Moreover, the evaluation of curative potentials of the formulations was carried out via parasite counts. The anemic and pathological conditions of nano-encapsulation were investigated for their cytotoxicity level.
    Results
    The CN-AuNPs show surface plasmon resonance absorption ranging from 526 to 529 nm with smaller particle size at the lower citrate volume. The TEM image of CN-AuNPs with polyethylene glycol (PEG) and CN-AuNPs-PEG encapsulated with chloroquine diphosphate revealed spherical shape with EDS showing the appearance of gold (Au) at 2.0, 2.1, and 9.9 KeV. The SAED also revealed that the AuNPs were crystalline in nature. The in vitro time-dependent encapsulation release showed an extension of time release, compared to CN-AuNPs-PEG with parasitemia clearance at the same level of cytotoxicity.
    Conclusion
    Therefore, although improved activity of the CN-AuNPs-PEG encapsulating was achieved but its cytotoxicity still is a limitation.
    Keywords: Chemical synthesis, Characterization, Chloroquine diphosphate, Encapsulation, Gold Nanoparticles
  • Ensiyeh Shafaei, Baharak Divband, Nahideh Gharehaghaji * Pages 263-268
    Objective(s)
    Relevance between magnetic resonance imaging (MRI) relaxation rate and concentration of magnetic nanoparticles determines the capability of a nanomaterial to provide MRI contrast. In the present study, alginate was conjugated to gadolinium/graphene oxide nanocomposite to form gadolinium/graphene oxide/alginate nanocomposite, aiming to investigate its effect on the relevance between MRI longitudinal relaxation rate and paramagnetic gadolinium concentration.
    Materials and Methods
    The physicochemical properties of the nanocomposite and its effect on the cell culture were investigated. Moreover, MRI longitudinal relaxation rates were determined based on the corresponding exponential curves, and the graph of their relevance with gadolinium concentration was plotted.
    Results
    The average thickness and sheet size of the nanocomposite were three and 100 nanometers, respectively. The nanocomposite showed high cell viability, even at the relatively high concentration of 75 µg/ml. In addition, a linear correlation was observed between longitudinal relaxation rate and gadolinium concentration.
    Conclusion
    According to the results, the linearity between gadolinium/graphene oxide/alginate nanocomposite and gadolinium concentration, which revealed a high slope, confirmed the potential of the nanocomposite to significantly improve the positive contrast of MR images.
    Keywords: Gadolinium, Graphene oxide, MRI, Nanocomposite
  • Khatereh Faaliyan, Hassan Abdoos *, Ehsan Borhani, Seyyed Salman Seyyed Afghahi Pages 269-275
    Objective(s)
    The use of cationic surface-active agents (surfactant) in the synthesis of nanoparticles, with formation of micelle, can act as a template for the formation of meso-porous silica. Changes in the concentration of surfactants can affect the structures and properties of the resulting nanoparticles.
    Materials and Methods
    Magnetite nanoparticles were prepared as cores using the coprecipitation method. Silica shells were formed on the prepared cores using sol-gel through the single-step process. During synthesis, cetrimonium bromide (CTAB) was used as a surfactant at low (0.1 g), medium (1 g), and high concentrations (7 g), and the effects on the properties of the nanoparticles were investigated. The core-shell nanoparticles were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In addition, the surface porosities of the nanoparticles were evaluated using the BET and BJH methods. The vibrating sample magnetometer (VSM) was also employed to assess the magnetic characteristics of the synthesized samples.
    Results
    The results of XRD indicated that the nanoparticles were composed of magnetite and silica, while the SEM and TEM images confirmed the presence of uniform spherical particles with a core-shell structure. According to the results of the VSM tests, all nanoparticles showed super-paramagnetic behaviors. Moreover, the increased concentration of CTAB led to an increment in saturation magnetization (Ms), size, and volume of the surface pores, while the specific surface area of the nanoparticles decreased.
    Conclusion
    According to the results, the properties of the silica shell could be adjusted in terms of pore characteristics and magnetic behavior by changing the concentration of the surfactant.
    Keywords: Core-shell, Magnetite-silica, Magnetic behavior, Nanoparticle, Surfactant
  • Masoumeh Zangeneh, Hassan Ali Nedaei *, Hossein Mozdarani, Aziz Mahmoudzadeh, Sharmin Kharrazi, Mahdieh Salimi Pages 276-290
    Objective(s)

    Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors. The present study aimed to evaluate the radiosensitization effects of ZnO NPs on human lung cancer cells under megavoltage (MV) X-ray irradiation.

    Materials and Methods

    ZnO NPs with the mean diameter of seven nanometers were synthesized and characterized. The cytotoxicity and cellular uptake of ZnO NPs were evaluated in SKLC-6 lung cancer and MRC-5 normal lung cells using the 3-(4,5-dimethylthiazol-yl)-5(3-carboxymethoxyphenyl)-2H-tetrazolium (MTT) and inductively coupled plasma-mass spectrometry assays, respectively. In addition, the radiosensitization effects of ZnO NPs were investigated under MV irradiation using a clonogenic survival assay. Apoptosis induction and DNA damage were also evaluated using flow cytometry and cytokinesis-block micronucleus assay, respectively.

    Results

    ZnO NPs were taken up and reduced the viability of the cancer cells at a higher rate compared to the normal cells. Moreover, ZnO NPs significantly enhanced the radiosensitivity of the cancer cells with the sensitizer enhancement ratios of 1.23 and 1.31 at the concentrations of 10 and 20 μg/ml, respectively. However, they had no significant effect on the radiosensitivity of the normal cells. Apoptosis induction and DNA damage also improved at a higher rate in the cancer cells compared to the normal cells with the combination of ZnO NPs with MV radiation.

    Conclusion

    According to the results, ZnO NPs had the potential to be a selective radiosensitizer for lung cancer radiotherapy under MV X-ray irradiation. Some of the cytotoxic and genotoxic mechanisms in radiosensitization by ZnO NPs were elevated apoptosis induction and DNA damage levels.

    Keywords: Lung cancer, Megavoltage Energy, Radiosensitization, Radiotherapy, ZnO nanoparticles
  • Sadegh Shurche *, Mohammad Yousefi Pages 291-300
    Objective(s)

    Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy.

    Materials and Methods

    In the present study, we initially designed a phantom based on Murray’s minimum work law using the AutoCAD software. Afterwards, the phantom was fabricated using lithography and imaged using a Siemens Magnetom 3T Prisma MRI scanner at the National Brain Mapping Laboratory, Iran. Finally, the velocity and pressure in the capillary network were simulated using the COMSOL software. Moreover, three-dimensional Navier-Stokes equations were applied to model the NP transport and dispersion in blood suspension.

    Results

    According to the findings, particle size, vessel geometry, and vascular flow rate affected the delivery efficacy and NP distribution. Cerebral blood flow, cerebral blood volume, mean transit time, and curves for the capillary network were obtained at different times. The simulations indicated that the velocity and pressure in the capillary network were within the ranges of 0.0001-0.0005 m/s and 5-25 mm/Hg, respectively. Higher particle concentration was also observed in the non-uniform NP distribution profile near the vessel wall.

    Conclusion

    We investigated the effects of the vessel size and geometry and particulate nature of blood on the delivery and distribution of NPs. For targeted drug delivery applications, a mechanistic understanding on the nanomedicine design was provided as well.

    Keywords: Capillary network, finite element method, Nanoparticle, Simulation
  • Azam Karimi, Lotfollah Khajehpour *, Mahnaz Kesmati Pages 301-310
    Objective(s)
    Nanoparticles of iron oxide (nFe2O3) are widely used in medicine and industry and could interfere with the brain processes associated with memory. The involvement of muscarinic cholinergic receptors in the process of memory formation has been confirmed. The present study aimed to investigate the possible interference of the cholinergic muscarinic receptors of the dorsal hippocampal CA1 area in the memory impairment induced by nFe2O3 in adult male rats.
    Materials and Methods
    In this study, we examined the possible involvement of the cholinergic muscarinic receptors of the dorsal hippocampal CA1 area in the memory impairment induced by nFe2O3. In total, 70 male rats were divided into 10 groups of saline (1 µl/rat)+saline (1 ml/kg; intraperitoneal [IP]), saline (1 µl/rat)+nFe2O3 (5 and 7.5 mg/kg; IP), pilocarpine (1 and 2 µg/rat)+saline (1 ml/kg), pilocarpine (1 and 2 µg/rat)+nFe2O3 (7.5 mg/kg; IP), scopolamine (1 and 2 µg/rat)+saline (1 ml/kg), and scopolamine (1 µg/rat)+ nFe2O3 (5 mg/kg; IP).
    Results
    Pilocarpine and scopolamine were injected intra-CA1 after training and before the IP administration of nFe2O3. The latency to enter the dark compartment in the step-through apparatus and locomotor activity was performed on the animals in an open field at 24 hours and seven days after training. The results indicated that nFe2O3 (7.5 mg/kg) decreased memory retrieval (P
    Keywords: Cholinergic system, Hippocampus, Iron oxide, Memory, Nanoparticle
  • Majid Salehi, Saeed Farzamfar, Hossein Ghanbari, Mehdi Adabi, Amir Amani *, Gholamreza Savari Pages 311-320
    Objective(s)

    The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique.

    Materials and Methods

    The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using scanning electron microscopy and Fourier-transform infrared spectroscopy (FTIR).

    Results

    The size of the prepared BG and GEL NPs was estimated to be 400 and 234 nanometers, respectively. The porosity and contact angle of PCL/CH/GEL NPs/BG was 74% and 72°, respectively. Weight loss and electron microscopy evaluations indicated the improved degradation rate of the scaffolds and spreading tendency of the cells on the scaffolds when modified as compared to the scaffolds that were purely obtained from PCL. In addition, the in-vitro studies revealed that the MG-63 cells cultured on the PCL/CH/GEL NPs/BG scaffolds showed improved cell proliferation more significantly compared to the scaffolds obtained from PCL, PCL/CH/GEL NPs, PCL/CH, and PCL/GEL NPs. Mechanical examinations also showed that PCL/CH/GEL/BG scaffolds had the highest mechanical strength compared to other groups (i.e., 4.66 Mpa). Cell viability was estimated to be 96.7%, and the alizarin red test indicated the significant improvement of mineralization in the PCL/CH/GEL NP group.

    Conclusion

    According to the results, the PCL scaffolds that were modified by CH/GEL NPs/BG had the high potency to be used as bone tissue engineering scaffolds.

    Keywords: Bioactive Glass, Chitosan, Gelatin NPs, PCL, Thermally Induced Phase Separation
  • Mahjabin Khosravi, Manizheh Karami *, Abazar Hajnorouzi, Mohammadreza Jalali Pages 321-328
    Objective(s)

    With no substantial cost, we injected L-arginine into the rat’s corpus callosum (CC) to create animal model of multiple sclerosis (MS) and investigated the pre-injection effect of gold nanoparticles (GNPs).

    Materials and Methods

    Adult male Wistar rat (250-300 g) was surgically cannulated at the CC, and after recovery it was injected L-arginine (3-200 µg/rat, intra-CC) once daily for 3 to 5 consecutive days. GNPs (0.001-0.01 µg/rat, intra-CC) were injected alone or prior to the L-arginine using the same procedure. Control group solely received saline (1 µL/rat, intra-CC). Brain was studied with luxol fast blue. Weight change was also analyzed via the analysis of variance (ANOVA).

    Results

    L-arginine significantly induced (p< 0.05) a reduction in the fiber density while the neurons increased (p< 0.05). Single GNPs reduced (p< 0.05) the fiber and neuron densities; however, pre-injection of NPs caused myelinated fibers and uniform density of neurons.

    Conclusion

    The L-arginine may trigger demyelination by pro-inflammatory nitric oxide (NO), and the GNPs may improve this effect.

    Keywords: Corpus callosum, Demyelination, Gold Nanoparticle, L-arginine, Multiple Sclerosis, Nitric oxide, Rat