فهرست مطالب

Nanomedicine Journal - Volume:7 Issue: 3, Summer 2020

Nanomedicine Journal
Volume:7 Issue: 3, Summer 2020

  • تاریخ انتشار: 1399/04/11
  • تعداد عناوین: 9
|
  • Parinaz Mehnati, Reza Malekzadeh, Mohammad Yousefi Sooteh * Pages 170-182

    composites with micro- and nano-metal fillers has attracted the attention of researchers for radiation shielding applications. Lead toxicity and heaviness have oriented extensive research toward the use of non-lead composite shields. The present study aimed to systematically review the efficiency of the composite shields of various micro- and nano-sized materials as composite shields have been considered in radiation protection and diagnostic radiology. In addition, a meta-analysis was performed to determine the effects of filler size, filler type, shield thickness and tube voltage on dose reduction. The relevant studies published since 2000 were identified via searching in databases such as Google Scholar, Medline, Web of Science, Scopus, and Embase. In total, 51 articles were thoroughly reviewed and analyzed. Heterogeneity was assessed using the χ2 and I-square (I2) tests, and a fixed effects model was used to estimate the pooled effect sizes. The correlations between the subgroups were determined separately using meta-regression analysis. According to the results, the bismuth shield dose reduced from 22% to 98%, while the tungsten shield dose increased from 15% to 97%. The rate also increased from 6% to 84% in the barium sulfate shields. The combination of two metals resulted in higher attenuation against radiation, with the nano-shields exhibiting higher attenuation compared to the micro-shields, especially in low energies. Moreover, the meta-analysis indicated that the fixed effects pooled estimation of dose reduction was 89% for shield thickness (95% CI: 79-100; P<0.001), 73% for tube voltage (95% CI: 63-83; P<0.001; 50-100 kV), and 59% for tube voltage (95% CI: 35-82; P<0.001; kV>100). The single-metal personal shields made of bismuth powder had better performance than tungsten and barium sulfate. In addition, the combined metals in a shield showed more significant attenuation and dose reduction compared to the single-metal shields.

    Keywords: Aprons, Garments, Radiology, Non-lead shields, Patient Radiation Protection
  • Elnaz Bagheri, Legha Ansari, Khalil Abnous, Seyed Mohammad Taghdisi, Mahshid Naserifar, Mohammad Ramezani *, Mona Alibolandi Pages 183-193

    Several hybrid sensing materials, which are organized by interaction of organic molecules onto inorganic supports, have been developed as a novel and hopeful class of hybrid sensing probes. The hybrid silica-magnetic based sensors provide perfect properties for production of various devices in sensing technology. The hybridization of silica and magnetic NPs as biocompatible, biodegradable and superparamagnetic structures provides the opportunity to produce capable sensing materials. The fluorescence, electrochemical and calorimetric sensors based on silica-magnetic materials can be applied in quantitative detection of various analytes. This review touches upon a subject of the design and synthesis of different sensors based on magnetic-silica hybrid nanomaterials and discusses their applications for improved detection of analytes in environmental and biological fields.

    Keywords: Hybrid, Magnetic, Nanomaterial, Silica, Sensor
  • Manjot Kaur, Kulwinder Singh, Paviter Singh, Amanpreet Kaur, Ramovatar Meena, Gajendra Pratap Singh, Hamed Barabadi, Muthupandian Saravanan *, Akshay Kumar Pages 194-198
    Objective(s)
    Aluminium nitride (AlN) could be used in implantable biomedical sensor devices, for which cytotoxicity analysis is of utmost importance.
    Materials and Methods
    AlN nanoparticles were synthesized using a simple and effective solvothermal method. The X-ray diffraction results revealed the cubic phase of AlN, and the field emission scanning electron microscopy analysis demonstrated the structural morphology of the synthesized materials. In addition, the cytotoxicity of the AlN nanoparticles was assessed against healthy (HEK-293, HUVEC, and MCF10A) and cancerous cell line (HeLa). The intensity of the reactive oxygen species was also measured to determine the induced oxidative stress in the treated cells.
    Results
    The cytotoxicity analysis indicated that the AlN nanoparticles were nontoxic against the cancerous and normal cell lines. No significant changes were observed between the low doses of the AlN nanoparticles in the treated and control cells. However, morphological changes were detected by a phase contrast microscope, while insignificant changes were observed similar to the control cells.
    Conclusion
    The findings of this study could lay the groundwork for the development of AlN nanoparticles for further biomedical applications.
    Keywords: Aluminium Nitride, Biocompatibility, Cytotoxicity, Nanoparticles
  • Natalia P. Akentieva *, Аrthur R. Gizatullin, Natalia A. Sanina, Nadezhda N. Dremova, Vladimir I. Torbov, Natalia I. Shkondina, Nikolai Zhelev, Sergei M. Aldoshin Pages 199-210
    Objective(s)

    Currently, the development of nanoparticles for the stabilization and targeted delivery of cardiac drugs has gained significance. The present study aimed to develop nontoxic nanoparticles based on chitosan-hyaluronic acid (HA), encapsulate dinitrosyl iron complexes (DNICs, donors NO) into the nanoparticles to increase the stability and effectiveness of their action, and assess the effect of the nanoparticle-DNIC complex on the cell viability of cardiomyocytes.

    Materials and Methods

    Nanoparticles were obtained from chitosan-HA using the ionotropic gelation technology, and the morphology and size of the nanoparticles were determined using electron microscopy. The DNICs were built into the nanoparticles using the physical association method, and the stability of the nanoparticle-DNIC complexes and NO release was investigated using the electrochemical method.

    Results

    Analysis by the electron microscopy showed that the nanoparticles were homogeneous in terms of shape and had an optimal size of ~100 nanometers. In addition, the incorporation of the DNICs into the composition of the nanoparticles significantly increased the stability of the DNICs, while also prolonging the generation of NO and enhancing the yield of nitrogen monoxide. Fluorescence analysis indicated that the chitosan-HA nanoparticles increased the cell viability of rat cardiomyocytes.

    Conclusion

    The nanoparticles were fabricated from chitosan and HA. The encapsulation of the DNICs into the composition of the nanoparticles could stabilize these compounds, while prolonging and increasing the generated nitric oxide. The nanoparticle-DNICs were water-soluble, biocompatible, biodegradable, and nontoxic, which could be used as potential cardiac drugs for the treatment of cardiovascular diseases.

    Keywords: Chitosan, Dinitrosyl Iron Complexes, Hyaluronic acid, Nanoparticles, NO Donors
  • Aditya Nath Pandey, Kuldeep Rajpoot, Sunil K. Jain K. Jain * Pages 211-224
    Objective(s)

    Colorectal cancer (CRC) is a prevalent cancer worldwide. The present study aimed to synthesize and investigate the potential of wheat germ agglutinin (WGA) conjugated with polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) incorporating 5-fluorouracil (5-FU).

    Materials and Methods

    The NPs were investigated in terms of various characteristics, such as the particle size, surface charge, surface morphology, entrapment efficiency rate, and in-vitro drug release profile in simulated gastric and intestinal fluids. The optimized NPs were conjugated with WGA and characterized for the WGA conjugation efficiency, mucoadhesion, and cytotoxicity studies.

    Results

    The zeta potential of the WGA-conjugated NPs decreased (-17.9±1.4 mV) possibly due to the conjugation of the NPs with WGA, which reduced the zeta potential. The WGA-conjugated NPs exhibited sustained drug release effects (p<0.05) compared to the marketed formulation containing 5-FU after 24 hours. In addition, the optimized NPs followed the Higuchi kinetics, showing diffusion-controlled drug release mechanisms. Finally, the WGA-conjugated PLGA NPs could significantly inhibit the growth of colon cancer cells (HT-29 and COLO-205) compared to the non-conjugated NPs and pure drug solution (P<0.05).

    Conclusion

    According to the results, the WGA-conjugated NPs could be potential carrier systems compared to the non-conjugated NPs for the effective management of CRC.

    Keywords: Carbodiimide Linking, COLO-205, Nanoparticles, PLGA, Wheat Germ Agglutinin, 5-fluorouracil
  • Marzieh Mohammadi, Mona Alibolandi, Khalil Abnous, Zahra Salmasi, MahmoudReza Jaafari *, Mohammad Ramezani Pages 225-230
    Objective(s)

    Fabricating a biomimetic scaffold platform combined with controlled release of bioactive agents is a practical approach for bone tissue engineering. Controlled delivery of peptides and growth factors which play a significant role in osteogenesis is an important issue reducing the associated adverse effects and leading to cost-effectiveness.

    Materials and Methods

    We developed two liposomal formulations of bone morphogenetic protein-2 (BMP-2) peptide designated as F1 and F2 with controlled release properties. Due to high negative zeta potential of F1 formulation, the surface of the liposomes was decorated with positively charged BMP-2 peptide while the peptide was encapsulated in F2 formulation. Then, we evaluated the hypothesis that whether the electrostatically loaded peptide could act as a ligand and improve the cellular uptake and osteogenic differentiation of mesenchymal stem cells.

    Results

    Both formulations were less than 100 nm in size. The release study revealed that both formulations showed a sustained release pattern for 21 days. However, the cumulative releases were 60% and 40% in F1 and F2 formulations, respectively. Flow cytometry analysis indicated that cell internalization of F1 liposomes was more than the other formulation. In the next step, F1 and F2 formulations were attached covalently to our previously developed nanofibrous electrospun scaffold and biocompatibility and osteogenic differentiation of each formulation were studied. The results indicated that the proliferation of the cells seeded on F1 liposcaffold was significantly more than F2 liposcaffold at days 1 and 3. Furthermore, F1 liposcaffold showed superior osteogenic differentiation through measurement of alkaline phosphatase activity which could be due to the higher release pattern of F1 liposomes and their improved cellular uptake.

    Conclusion

    Our findings revealed that controlled release BMP-2 decorated liposomal formulations immobilized on nanofibrous electrospun scaffold platform could be a promising candidate for bone regeneration therapeutics and merits further investigation.

    Keywords: BMP-2 peptide, bone regeneration, MSCs, Liposome, Osteogenic differentiation, Scaffold
  • Aliakbar Dehno Khalaji *, Marketa Jarosova, Pavel Machek Pages 231-236
    Objective(s)

    In this study, a new copper precursor was prepared from the combination of Cu(CH3COO)2∙H2O (1 g in 5 ml of methanol) and benzoic acid (1 g in 5 ml of methanol) at room temperature. Following that, the copper precursor was calcined at the temperature of 500ºC and 600ºC for 1.5 hours to form CuO/Cu2O nanocomposites with the code numbers of CuO-1 and CuO-2, respectively.

    Materials and Methods

    The prepared CuO/Cu2O nanocomposites were characterized by Fourier Transform infrared (FT-IR), UV-Vis, and photoluminescence (PL) spectroscopy, X-ray powder diffraction (XRD), and transmission electron microscopy (TEM).

    Results

    The results of the FT-IR and XRD techniques confirmed the formation of the CuO/Cu2O nanocomposites. In the UV-Vis of CuO/Cu2O nanocomposites, two peaks were observed at approximately 216 and 277 nanometers, which were assigned to the direct transition of electrons and surface plasmon resonance. In addition, the TEM images indicated that the CuO/Cu2O nanocomposites had diverse shapes with high agglomeration. The antibacterial results also showed that the inhibitory effects of the prepared CuO/Cu2O nanocomposites (CuO-1 and CuO-2) were more significant against the two gram negative strains compared to the two gram positive strains.

    Keywords: Antibacterial, Copper precursor, CuO, Cu2O nanocomposites, Photoluminescence
  • HamidReza Ghorbani *, Alireza Hoseinpour Kasgari, Peyman Valipour, Farnaz Jafari Pages 237-242
    Objective(s)

    A combination of biological and microemulsion methods was used to synthesize silver nanoparticles for the first time. The applied method could be referred to as the biomicroemulsion method, which has the advantages of both biological and the microemulsion methods.

    Materials and Methods

    In the present study, silver nanoparticles were synthesized in a water-in-oil biomicroemulsion using silver nitrate, which was solubilized in the water core of one microemulsion as the source of silver ions. In addition, a bacterial culture supernatant solubilized in the water core of another microemulsion was employed as the biological reducing agent, dodecane was used as the oil phase, and sodium bis(2-ethylhexyl) sulfosuccinate was applied as the surfactant. Moreover, the antibacterial activity of the nanoparticles was investigated against gram-positive and gram-negative bacteria by disc-diffusion method.

    Results

    The UV-Vis absorption spectra, dynamic light scattering, and transmission electron microscopy were employed to characterize the presence, size distribution, and morphology of the nanoparticles, respectively. According to the results, the nanoparticles had the optimal conditions in terms of the size and distribution at the silver nitrate concentration of 0.001 M. In addition, the analysis of antibacterial activity indicated that the inhibition zone diameter of Staphylococcus aureus was higher compared to Escherichia coli.

    Conclusion

    Silver nanoparticles were synthesized successfully using biomicroemulsion method and showed significant anti-bacterial activities against S. aureus and E. coli.

    Keywords: Antibacterial, Biomicroemulsion, Synthesis, Silver nanoparticles
  • Mojtaba Ansari *, Hossein Eslami Pages 243-250
    Objective(s)
    Artemisia absinthium is an aromatic, perennial small shrub that shows multiple medical benefits, including anticancerous, neuroprotective, antifungal, hepatoprotective, antidepressant and antioxidant properties. One of the effective approaches to treat Alzheimer’s disease is targeting amyloid aggregation by antiamyloid drugs. In the current research study, an excellent grouping of niosomal, lipid nano-carriers drugs containing artemisia absinthium is advanced and characterized to inhibit amyloid aggregation.
    Materials and Methods
    Niosomal vesicles were made employing phosphatidylcholine, span 60, cholesterol and DSPE-PEG2000 by the thin-film method. Then artemisia absinthium was loaded into the niosomes. Their physico-chemical attributes were analyzed utilizing Zeta-Sizer, FTIR, and SEM, and the amount of drug release was measured at 37° C. Finally, the inhibitory effect of artemisia absinthium that loaded niosomal vesicles on the aggregation of amyloid-β peptides was investigated using Thioflavin T fluorescence measurements and atomic force microscopy.
    Results
    Niosomes containing artemisia absinthium have a size of 174±2.56nm, the encapsulation efficiency of 66.73%, zeta potential of -26.5±1/42 mV and polydispersity index (PDI) of 0.373±0/02. The release of the drug is controlled in this nano-carrier and FTIR and SEM investigations showed that the drug and nano-carrier did not interact and their particles had a spherical structure. In the end, the inhibitory effect of artemisia absinthium that loaded niosomal vesicles on the aggregation of amyloid-β peptides was examined and confirmed through Thioflavin T fluorescence measurements and atomic force microscopy.
    Conclusion
    Meanwhile, the findings of the current study, confirm the appropriate physicochemical features of the system, a slow-release system, show that this nano-carrier inhibits amyloid aggregation, thus, the nano-niosomes containing essential oil from artemisia absinthium has the capability to preclude amyloid development.
    Keywords: Alzheimer’s disease, Amyloid-β aggregation, Niosome, Artemisia absinthium, Drug Delivery