فهرست مطالب

Journal Of Industrial Engineering International
Volume:12 Issue: 3, Summer 2016

  • تاریخ انتشار: 1395/06/11
  • تعداد عناوین: 10
|
  • Mahtab Sherafati, Mahdi Bashiri * Pages 255-269

    One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.

    Keywords: Supply chain network design . Closed loop . Transportation mode . Fuzzy mathematical programming
  • Sedighe Zibaei, Ashkan Hafezalkotob *, Seyed Sajad Ghashami Pages 271-286

    In this paper, a novel methodology is proposed to solve a cooperative multi-depot vehicle routing problem. We establish a mathematical model for multi-owner VRP in which each owner (i.e. player) manages single or multiple depots. The basic idea consists of offering an option that owners cooperatively manage the VRP to save their costs. We present cooperative game theory techniques for cost saving allocations which are obtained from various coalitions of owners. The methodology is illustrated with a numerical example in which different coalitions of the players are evaluated along with the results of cooperation and cost saving allocation methods.

    Keywords: Multi depot vehicle routing problem .Cooperation . Coalition . Cooperative game theory . Cost saving allocation
  • Sumit Kumar Maiti, Sankar Kumar Roy * Pages 287-298

    In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general transformation technique with the help of binary variables is used to transform the multi-choice type cost coefficients of the objective functions of Decision Makers(DMs). Then the transformed problem is considered as a deterministic multi-choice bi-level programming problem. Finally, a numerical example is presented to illustrate the usefulness of the paper.

    Keywords: Bi, level programming . Stochastic programming . Multi, choice programming . Fuzzy programming . Non, linear programming
  • Mohammadreza Shahriari *, Naghi Shoja, Amir Ebrahimi Zade, Sasan Barak, Mani Sharifi Pages 299-310

    This article investigates a JIT single machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed bi-objective mixed integer model minimizes total earliness-tardiness and makespan simultaneously. Due to the computational complexity of the problem, multi-objective particle swarm optimization (MOPSO) algorithm is implemented. Also, as well as MOPSO, two other optimization algorithms are used for comparing the results. Eventually, Taguchi method with metrics analysis is presented to tune the algorithms’ parameters and a multiple criterion decision making technique based on the technique for order of preference by similarity to ideal solution is applied to choose the best algorithm. Comparison results confirmed the supremacy of MOPSO to the other algorithms.

    Keywords: Scheduling . Single machine . Periodic maintenance . Total earliness, tardiness . Multi, objective optimization . MCDM
  • Seyed Mohammad Seyedhosseini *, Ahmad Makui, Kamran Shahanaghi, Sara Sadat Torkestani Pages 311-341

    Determining the best location to be profitable for the facility’s lifetime is the important decision of public and private firms, so this is why discussion about dynamic location problems (DLPs) is a critical significance. This paper presented a comprehensive review from 1968 up to most recent on published researches about DLPs and classified them into two parts. First, mathematical models developed based on different characteristics: type of parameters (deterministic, probabilistic or stochastic), number and type of objective function, numbers of commodity and modes, relocation time, number of relocation and relocating facilities, time horizon, budget and capacity constraints and their applicability. In second part, It have been also presented solution algorithms, main specification, applications and some real-world case studies of DLPs. At the ends, we concluded that in the current literature of DLPs, distribution systems and production–distribution systems with simple assumption of the tackle to the complexity of these models studied more than any other fields, as well as the concept of variety of services (hierarchical network), reliability, sustainability, relief management, waiting time for services (queuing theory) and risk of facility disruption need for further investigation. All of the available categories based on different criteria, solution methods and applicability of them, gaps and analysis which have been done in this paper suggest the ways for future research.

    Keywords: Facility location . Dynamic . Dynamic location problems (DLPs) . Time horizon . Review
  • Mostafa Moradgholi, Mohammad Mahdi Paydar *, Iraj Mahdavi, Javid Jouzdani Pages 343-359

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

    Keywords: Virtual cell formation . Genetic algorithm . Workforce assignment . Bi, objective mathematical programming . Fuzzy goal programming
  • Abdollah Arasteh Pages 361-375

    Investments in technology create a large amount of capital investments by major companies. Assessing such investment projects is identified as critical to the efficient assignment of resources. Viewing investment projects as real options, this paper expands a method for assessing technology investment decisions in the linkage existence of uncertainty and competition. It combines the game-theoretic models of strategic market interactions with a real options approach. Several key characteristics underlie the model. First, our study shows how investment strategies rely on competitive interactions. Under the force of competition, firms hurry to exercise their options early. The resulting “hurry equilibrium” destroys the option value of waiting and involves violent investment behavior. Second, we get best investment policies and critical investment entrances. This suggests that integrating will be unavoidable in some information product markets. The model creates some new intuitions into the forces that shape market behavior as noticed in the information technology industry. It can be used to specify best investment policies for technology innovations and adoptions, multistage R&D, and investment projects in information technology.

    Keywords: Investment analysis . Real options . Game theory . Information technology
  • Rajeev Rathi *, Dinesh Khanduja, S. K. Sharma Pages 377-387

    Six Sigma is a strategy for achieving process improvement and operational excellence within an organization. Decisions on critical parameter selection in analysis phase are always very crucial; it plays a primary role in successful execution of Six Sigma project and for productivity improvement in manufacturing environment and involves the imprecise, vague and uncertain information. Using a case study approach; the paper demonstrates a tactical approach for selection of critical factors of machine breakdown in center less grinding (CLG) section at an automotive industry using fuzzy logic based multi attribute decision making approach. In this context, we have considered six crucial attributes for selection of critical factors for breakdown. Mean time between failure is found to be the pivotal selection criterion in CLG section. Having calculated the weights pertinent to criteria through two methods (fuzzy VIKOR and fuzzy TOPSIS) critical factors for breakdown are prioritized. Our results are in strong agreement with the perceptions of production and maintenance department of the company.

    Keywords: Six Sigma . Analytical hierarchy process .Fuzzy logic . MADM . Center less grinding . Automotive industry
  • Angelos P. Markopoulos *, Sotirios Georgiopoulos, Dimitrios E. Manolakos Pages 389-400

    Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, namely the adaptive back propagation algorithm of the steepest descent with the use of momentum term, the back propagation Levenberg–Marquardt algorithm and the back propagation Bayesian algorithm. Moreover, radial basis function neural networks are examined. All the aforementioned algorithms are used for the prediction of surface roughness in milling, trained with the same input parameters and output data so that they can be compared. The advantages and disadvantages, in terms of the quality of the results, computational cost and time are identified. An algorithm for the selection of the spread constant is applied and tests are performed for the determination of the neural network with the best performance. The finally selected neural networks can satisfactorily predict the quality of the manufacturing process performed, through simulation and input–output surfaces for combinations of the input data, which correspond to milling cutting conditions.

    Keywords: Artificial neural networks. Training algorithms . Radial basis function . Surface roughness . Milling
  • S. Ziari Pages 401-405

    Jahanshahloo et al. (Appl Math Comput 153:215–224, 2004) propose a method for ranking extremely efficient decision making units (DMUs) in data envelopment analysis (DEA) using super-efficiency technique and l1-norm and they show that the presented method is able to eliminate the existing difficulties in some methods. This paper suggests an alternative transformation to convert the nonlinear model proposed by Jahanshahloo et al. (Appl Math Comput 153:215–224, 2004) into a linear programming form. The present paper shows that model with this transformation is equivalent to the above-mentioned nonlinear model. The motivation of this work is to linearize the proposed nonlinear model by Jahanshahloo et al. (Appl Math Comput 153:215–224, 2004) which has the higher order of complexity.

    Keywords: Data envelopment analysis (DEA) . Ranking . Efficiency . Extremely efficient . Chinese cities