فهرست مطالب

Molecular Biology Research Communications
Volume:11 Issue: 1, Mar 2022

  • تاریخ انتشار: 1401/01/09
  • تعداد عناوین: 6
|
  • Diem Hong Tran, Hau Thi Tran, Trang Nguyen Minh Pham, Huong Thi Thu Phung * Pages 1-10
    Food and beverage poisoning is detrimental to people's health since it can lead to fever, stomachaches, and even death. To rapidly detect the presence of foodborne pathogens, conventional PCR assays are currently widely employed. Meanwhile, isothermal PCR methods, in which the amplification reactions take place at a low and constant temperature, have lately emerged as effective and alternative means for quickly identifying pathogens in low-resource settings. Staphylococcus aureus and Pseudomonas aeruginosa are two of the most concerning foodborne bacterial infections. In this work, an isothermal PCR assay based on the Recombinase Polymerase Amplification (RPA) method was developed to simultaneously detect S. aureus and P. aeruginosa with high sensitivity and specificity. The limit of detection for multiplex RPA was 10 and 30 fg/reaction of S. aureus and P. aeruginosa genomic DNA, respectively. Furthermore, the reaction time was reduced to only 25 minutes, with a low incubation temperature of 39°C. Multiplex RPA reactions, in particular, were successful in directly identifying as low as 1 and 5 CFU/reaction of S. aureus and P. aeruginosa cells, respectively, without the need for DNA genome extraction. Moreover, the multiplex RPA reliably detected the two foodborne bacteria in milk, fruit juice, and bottled water samples. In conclusion, the direct multiplex RPA reported in this work offers a quick, easy, sensitive, and effective alternative approach for detecting the presence of S. aureus and P. aeruginosa without the requirement of a pricey instrument or highly-trained personnel.
    Keywords: Foodborne pathogen, RPA, isothermal PCR, direct detection
  • Marjan Khorsand, Zohreh Mostafavi-Pour *, Vahid Razban, Sahar Khajeh, Razieh Zare Pages 11-20
    The epithelial-to-mesenchymal transition (EMT) is a unique process resulting in enhanced cell motility, invasiveness, and metastasis in cancer. The EMT is regulated by several transcription factors, including Snail and Slug, which exert crucial roles during cancer progression. We have studied the effects of Docetaxel as the first-line chemotherapy agent for prostate cancer, and Telmisartan as an anti-hypertensive drug on the expression level of Snail and Slug. In addition, the effects of Docetaxel, Telmisartan and their combination on cancer cell proliferation were investigated. The PC3, DU145, MDA-MB468, and HEK cell lines were used for this study. Quantitative RT-PCR analysis and MTT assay were used to study the expression of Snail and Slug level and cell proliferative assay, respectively. We found that a combination of Docetaxel + Telmisartan effectively inhibits the cell proliferation in cancerous cells in comparison with each drug alone (P<0.05). Furthermore, in these cell lines, Docetaxel, Telmisartan and their combination significantly diminished the expression level of Snail and Slug genes compared to control cells (P<0.001), however, in the HEK cell line, this effect was seen only in the combination group. Our data imply that Telmisartan and its combination with Docetaxel exert strong inhibitory effects on the expression level of Snail and Slug genes. Also, these drugs and their combination could inhibit cancer cell proliferation. In conclusion, the combination of Telmisartan and Docetaxel has the potential to suppress the metastasis of prostate and breast cancer cells.
    Keywords: Cancer, Combination index, EMT, Slug, Snail
  • Hai-Vy Vo-Nguyen, Thanh-Tan Nguyen, Quoc-Gia Mai, Thien-Thien Tran, Thuoc Tran, Hieu Tran-Van * Pages 21-27
    Recombinant DNA technology has been playing the key role for a long time since its first beginning. DNA ligases have certainly contributed to the development of cloning techniques, as well as molecular study up to now. Despite being a prime cloning tool, DNA ligases still face some shortcomings which lead to their limit of use. Our study provided an improved method that simplified the basic restriction enzyme-based cloning (REC) by eliminating the ligation role, named recombinase-free cloning (RFC). This improved technique was designed with only one PCR reaction, one digestion reaction, and one temperature profile, which takes advantage of endogenous recombinase in E. coli host to create the target recombinant vector inside the cell. All purification steps were eliminated for effectively material- and time-saving. Five different clones were generated by RFC. This method showed relatively low efficiency yet successful at a range of 100% in every conducted trial with fragment sizes from 0.5-1.0 kbp. The RFC method could be completed within a day (about 9 hours), without the need of ligase or recombinase or purification steps, which significantly saved DNA components, materials as well as the time required. In conclusion, we expected to provide a more convenient cloning method, as well as enable faster generation of DNA clones, which would be well applied in the less equipped laboratories.
    Keywords: Cloning, Recombinant DNA, Molecular biology, E.coli DH5α
  • Yaser Hozhabri, Asie Sadeghi *, Mahdieh Nazari-Robati, Faegheh Bahri, Fouzieh Salimi, Moslem Abolhassani, Abbas Mohammadi Pages 29-36
    Aging is associated with an increase in oxidative stress, which damages organs such as the kidney. Trehalose has abundant beneficial activities including antioxidative effects. This study aimed to investigate the effects of trehalose on several antioxidant parameters of the aged kidney. Wistar rats were divided into three groups: young (4 months), aged (24 months), and aged-trehalose. The third group was treated with 2% trehalose for one month. The expression of target genes and enzyme activities in the kidney of the animals were evaluated by quantitative polymerase chain reaction (qPCR) and enzyme colorimetric procedures, respectively. Protein levels of NFE2L2 showed a 50% reduction in aged rats compared to young rats (P<0.001), which was restored by trehalose intervention. In addition, the activity and mRNA levels of catalase (CAT) increased in aged rats while treatment with trehalose reversed this trend. On the other hand, superoxide dismutase (SOD) activity was reduced in the kidneys of aged rats but was not affected by trehalose intervention .It is concluded that trehalose supplementation alleviates the antioxidant system impairments in the kidneys of aged rats. However, further investigations are needed to thoroughly describe the antioxidative impacts of trehalose on the kidneys during aging.
    Keywords: Trehalose, Oxidative stress, NFE2L2, SOD, Cat
  • Ahmad Reza Khosravi *, Atena Eslami-Farouji, Atiqullah Sultani-Ahmadzai, Sasan Mohsenzadeh Pages 37-54
    One new tribe (Plagiolobeae), one new species (Plagioloba derakii) together with two new combinations (P. persica and P. clavata) are established within Brassicaceae based on a decisive consideration of molecular phylogenetic dataset, morphological characters, fruit septum nature, as well as seed microsculpturing features. Results distinctly justified Arabis ottonis-schulzii as a synonym of Conringia persica and further molecular analyses proved its placement as a member of genus Plagioloba. It is also placed in a new tribe Plagiolobeae as close relatives of Conringieae and Coluteocarpeae. Finally, the diagnostic morphological characters separating the new tribe from the previously assigned tribe (Conringieae) are also discussed.
    Keywords: Arabis ottonis-schulzii, Brassicaeae, Conringia, Plagioloba, Plagiolobeae
  • Fatemeh Heidary, Mehdi Tourani, Fatemeh Hejazi-Amiri, Seyyed Hossein Khatami, Navid Jamali, Mortaza Taheri-Anganeh * Pages 55-66
    Lung cancer is the most common type of tumor worldwide. Non-small-cell lung carcinoma (NSCLC) is considered any epithelial cell-related lung cancer, which includes more than 85% of all lung cancer cases. NSCLC is less responsive to chemotherapy than SCLC. Therefore, the need for other treatments has become more pronounced and immunotherapy has gained increasing attention as a promising therapy in recent years. The current study aimed to design a multi-epitope peptide vaccine targeting main cancer/testis antigens of SP17, AKAP4, and PTTG1, which have a major function in tumor cell proliferation invasion. The protein vaccine was constructed using the rigorous immunoinformatics analysis and investigation of several immune system parameters, considering B cell epitopes and CD4 and CD8 induced epitopes as the most important cells to respond to cancer cells. Inverse translation and optimization of codons were performed to have the designed protein's cloning as well as expression potential in E.coli. Physicochemical, antigenic, and allergenic features were assessed to confirm the safety and immunogenicity of the vaccine. The secondary and tertiary structures were predicted. Finally, intrinsic disorder and 3D model refinement and validation were performed to eliminate structural problems. The designed construct had a stable structure that could be an antigen and stimulate the immune system and not be an allergen. The built model 3D structure was valid and stable. Further investigations are needed to approve the safety and immunogenic property of this new vaccine for NSCLC before it can be used in patients.
    Keywords: Lung cancer, bioinformatics, Epitope Vaccine