فهرست مطالب

Basic Medical Sciences - Volume:25 Issue: 5, May 2022

Iranian Journal of Basic Medical Sciences
Volume:25 Issue: 5, May 2022

  • تاریخ انتشار: 1401/03/15
  • تعداد عناوین: 15
|
  • Bahareh Samakar, Soghra Mehri, Hossein Hosseinzadeh * Pages 543-553

    Metabolic syndrome is a serious health condition, yet a common worldwide disorder. It includes several risk factors such as hypertension, dyslipidemia, and high glucose levels which lead the patients to higher risks of cardiovascular diseases, diabetes, and stroke. Phytotherapy plays an important role in treating components of metabolic syndrome. Nettle (Urtica dioica) is considered a valuable plant due to bioactive compounds such as formic acid and rich sources of flavonoids. To acknowledge the role of nettle in metabolic syndrome, several mechanisms have been suggested such as alterations in potassium and calcium channels which improve hypertension. Antihyperlipidemic properties of nettle are mediated by inhibition of HMGCoA reductase and amelioration of lipid peroxidation via antioxidant effects. Also, one of the flavonoids in nettle, quercetin, is responsible for decreasing total cholesterol. Moreover, nettle is responsible for anti-diabetic effects through processes such as increasing insulin secretion and proliferation of pancreatic β-cells. This review aims to gather different studies to confirm the potential efficacy of nettle in metabolic syndrome.

    Keywords: Diabetes, Hyperlipidemia, Hypertension, metabolic syndrome, Nettle, Urtica dioica
  • Melika Haghighi, Akbar Khorasani, Pegah Karimi, Mehdi Mahdavi * Pages 554-561
    Objective (s)

    SARS-CoV-2, emerging as a major threat to public health, has to be controlled through vaccination. Naloxone (NLX), an opioid receptor antagonist, demonstrated its adjuvant activity for microbial vaccines. In this study, inactivated SARS-CoV-2 was developed in the Alum/NLX adjuvant to increase the potency of the inactivated SARS-CoV-2 vaccine. 

    Materials and Methods

    BALB/c mice were immunized on days 0 and 14 with inactivated SARS-CoV-2-Alum, -Alum + NLX 3 mg/kg, -Alum + NLX 10 mg/kg, and -Freund adjuvant, as well as PBS. IFN-γ and IL-4 cytokines and Granzyme-B release were assessed with ELISA. In addition, specific total IgG, IgG1/IgG2a isotypes, and ratio as well as anti-RBD IgG responses were assessed with an optimized ELISA. 

    Results

    SARS-CoV-2-Alum-NLX10 group showed a significant increase in the IFN-γ cytokine response versus SARS-CoV-2-Alum, SARS-CoV-2-Alum-NLX3, and PBS groups. The SARS-CoV-2-Alum-NLX3 group exhibited a significant decrease in IL-4 cytokine versus SARS-CoV-2-Alum. The mice immunized with SARS-CoV-2-Alum-NLX10 showed a significant increase in CTL activity versus SARS-CoV-2-Alum and PBS. In addition, mice immunized with SARS-CoV-2-Alum-NLX3, SARS-CoV-2-Alum-NLX10 and SARS-CoV-2-Freund demonstrated an increase in IgG response, as compared with SARS-CoV-2-Alum and PBS group. Furthermore, all formulations of SARS-CoV-2 vaccines could induce both IgG1 and IgG2a isotypes. But, the IgG2a/IgG1 ratio in SARS-CoV-2-Freund and SARS-CoV-2-Alum-NLX10 revealed an increase as compared with that of the SARS-CoV-2-Alum group. Anti-RBD IgG response in the SARS-CoV-2-Alum-NLX10 group showed a significant increase as compared with the Alum-based vaccine. 

    Conclusion

    Formulation of inactivated SARS-CoV-2 virus in NLX/alum adjuvant improved the potency of humoral and, especially, cellular responses.

    Keywords: Alum Adjuvant, Immune responses, Inactivated SARS-CoV-2 - virus, Naloxone, Vaccine formulation
  • Ayşen Cakir, Busra Ocalan, Cansu Koc, Guldal Gulec Suyen, Mehmet Cansev, Nevzat Kahveci * Pages 562-568
    Objective (s)

    Sleep has a pivotal role in learning-memory and sleep deprivation (SD) negatively affects synaptic functioning. Cytidine-5-diphosphocholine (Citicoline) has been known to improve learning and memory functions. Our objective was to explore the effects of Citicoline on hippocampal and cortical synaptic proteins in rapid eye movement (REM) sleep-deprived rats.

    Materials and Methods

    Rats (n=36) were randomly divided into 6 groups. Environmental control or sleep deprivation was done by placing the rat on a 13 cm diameter platform (Large Platform [LP] group) or on a 6.5 cm diameter platform (REMSD group), respectively, for 96 hours. Rats randomized for controls (Home Cage [HC] group) were followed up in home cages. Rats in each of the REMSD, LP or HC group were randomized to receive either saline (0,9%NaCl) or Citicoline (600 μmol/kg) intraperitoneally twice a day for four days. After the experiments, rats were sacrificed; their cerebral cortices and hippocampi were dissected for analyzing the levels of pre-synaptic proteins synaptophysin and synapsin I, and the post-synaptic density protein-95 (PSD-95) by Western-blotting. 

    Results

    Hippocampal levels of PSD-95, but not the pre-synaptic proteins, were reduced by REM sleep deprivation. Citicoline treatment ameliorated the reduction in PSD-95 levels in REM sleep-deprived rats. On the other hand, REM sleep deprivation was not found to be significantly effective on pre- or post-synaptic proteins in cerebral cortex.

    Conclusion

    REM sleep deprivation reduces hippocampal PSD-95 levels which are enhanced by Citicoline treatment. These data propose that Citicoline may ameliorate the adverse effects of SD on hippocampal synaptic functioning.

    Keywords: Citicoline, Postsynaptic density protein-95, REM Sleep, Sleep deprivation, Synapsin I, Synaptophysin
  • MohammadReza Hosseiniravesh, Vida Hojati, Abolfazl Khajavirad, Hooman Shajiee, Mohammad Naser Shafei *, Reza Mohebbati Pages 569-576
    Objective (s)

    In the present study, the cardiovascular effects of glutamate NMDA receptor of the pedunculopontine tegmental nucleus (PPT) in normotensive and hydralazine (HLZ) hypotensive rats were evaluated. 

    Materials and Methods

    In the normotensive condition, MK-801(1 nmol; an NMDA receptor antagonist) and L-glutamate (L-Glu, 50 nmol an agonist) alone and together were microinjected into the nucleus using a stereotaxic device. In hypotensive condition, 2 min after induction of hypotension by HLZ (10 mg/kg, intravenous), drugs, same as in normotensive condition, were microinjected into the PPT. Recorded mean arterial pressure (MAP), systolic blood pressure (SBP), and heart rate (HR) were recorded throughout the experiment by a Power lab apparatus that was connected to a catheter inserted into the femoral arty. The cardiovascular changes (Δ) induced by microinjection drugs were computed and statistically analyzed.

    Results

    In the normotensive condition, L-Glu significantly increased ΔMAP and ΔSBP (P<0.001) and decreased ΔHR (P<0.01) compared with the control. MK-801 alone significantly increased HR (P<0.05) while co-injected with L-Glu + MK-801 it significantly attenuated the L-Glu effect on ΔMAP and ΔSBP but augmented ΔHR (P<0.01). In the hydralazine hypotension condition, L-Glu significantly improved hypotension (P<0.01) and deteriorated bradycardia induced by HLZ (P<0.05). MK-801 alone did not significantly affect ΔMAP, ΔSBP, and ΔHR but when co-injected with L-Glu (L-Glu + MK-801) it could significantly attenuate the cardiovascular effect of L-Glu in the PPT. 

    Conclusion

    We found that activation of NMDA receptors of the glutamatergic system in the PPT evoked blood pressure and inhibited HR in both normotensive and hypotensive conditions in rats.

    Keywords: blood pressure, Glutamate, Hypotension, NMDA receptor, Pedunculopontine tegmental nucleus
  • Priyanka Arya, Uma Bhandari *, Kalicharan Sharma, Priyanka Bansal Pages 577-585
    Objective (s)

    Excess intake of a high-fatty diet (HFD) together with zymosan administration mediates vasculitis response which leads to impaired serum lipid levels and causes arterial stiffness. In the development of new cholesterol-lowering medications, PCSK9 inhibitor (proprotein convertase subtilisin/kexin type 9) is an emerging therapeutic. The goal of the present study was to see whether anti-PCSK9 mAb1 might prevent vasculitis in C57BL/6 mice by blocking TLR2/NF-B activation in HFD and Zymosan-induced vasculitis. 

    Materials and Methods

    Protein-protein molecular docking was performed to validate the binding affinity of anti-PCSK9 mAb1 against TLR2. Under the experimental study, mice were randomly allocated to the following groups: Group I: standard mice diet (30 days) + Zymosan vehicle (sterile PBS solution of 5mg/ml on 8th day); Group II: HFD (30 days) + Zymosan ( single IP dose 80 mg/kg on day 8th); Group III: HFD+Zymosan + anti-PCSK9 mAb1 (6 mg/kg, s.c. on 10th and 20th days); Group IV: HFD+Zymosan+anti-PCSK9 mAb1 (10 mg/kg, s.c. on 10th and 20th days).

    Results

    In comparison with the low dose of anti-PCSK9 mAb1 (6 mg/kg), the high dose of anti-PCSK9 mAb1 (10 mg/kg) together with HFD and Zymosan inhibited vasculitis more effectively by decreasing aortic TLR2 and NF-B levels, reducing serum TNF- and IL-6, and up-regulating liver LDLR levels, which down-regulated serum LDL-C and improved serum lipids levels. Histopathological studies showed that anti-PCSK9 mAb1 treatment reduced plaque accumulation in the aorta of mice.

    Conclusion

    These findings indicate that anti-PCSK9 mAb1 has therapeutic potential in reducing HFD and Zymosan-induced vascular inflammation.

    Keywords: Anti-PCSK9 antibody, High-fat diet, Inflammation, Toll-Like Receptor, Zymosan
  • Mohammad Akbarin, Houshang Rafatpanah, Saman Soleimanpour, Abbas Amini, Amirali Arian, Arman Mosavat, Seyed Abdolrahim Rezaee * Pages 586-596
    Objective (s)

    Human T leukemia virus type one (HTLV-1) causes two life-threatening diseases in around five percent of infected subjects, a T cell malignancy and a neurodegenerative disease. TAX and HBZ are the main virulence agents implicated in the manifestation of HTLV-1–associated diseases. Therefore, this study aims to produce these HTLV-1 factors as recombinant Fc fusion proteins to study the structures, their immunogenic properties as vaccines, and their capability to produce specific neutralization antibodies.

    Materials and Methods

    TAX and HBZ sequences were chosen from the NCBI-nucleotide database, then designed as human Fc chimers and cloned into Pichia pastoris. Produced proteins were purified by HiTrap affinity chromatography and subcutaneously injected into rabbits. Rabbit Abs were purified by batch chromatography, and their neutralization activities for the HTLV-1-infected MT-2 cell line were assessed. Furthermore, the protective abilities of recombinant proteins were evaluated in Tax or HBZ immunized rabbits by MT-2 cell line inoculation and measurement of HTLV-1-proviral load.

    Results

    Specific Abs against Tax and HBZ can eliminate 2 million MT-2 cells in 1/1000 dilution in vitro. In challenging assays, the immunization of the animals using Tax or HBZ had no protective activity as HTLV-1 PVL was still positive.

    Conclusion

    The result suggests that recombinant TAX and HBZ: hFcγ1 proteins can produce a proper humoral immune response. Therefore, they could be considered a passive immunotherapy source for HTLV-1-associated diseases, while total TAX and HBZ proteins are unsuitable as HTLV-1 vaccine candidates.

    Keywords: ATLL, HBZ, HTLV, Immunization passive, Pichia pastoris, Recombinant proteins, Tax
  • Nihal Cetin *, Dervis Dasdelen, Rasim Mogulkoc, Esma Menevse, Abdulkerim Baltaci Pages 597-603
    Objective (s)

    This study aims to investigate the role of putrescine against brain ischemia-reperfusion (IR) injured rats administered with 250 µmol/kg exogenous putrescine and highlight the IR-associated mechanisms in energy metabolism and inflammatory pathway. 

    Materials and Methods

    The rats were divided into six groups: 1-Sham group; 2-IR group, 30 min of ischemia and 30 min of reperfusion was performed with bilateral carotid occlusion (BCAO); 3-IPR group, a single oral dose of putrescine was administered at the start of the 30-minute reperfusion; while in the other treatment groups, 4 doses of putrescine were given within 12-hour intervals. After 30 min of reperfusion, the first dose was administered immediately in the IR-PI (group 4), after 3 hr in IR-PII (group 5), and after 6 hr in IR-PIII (group 6). Interleukin-6 (IL-6), Nuclear factor NF-kappa-B (NF-kB), Adenosine triphosphate (ATP), total Nitric oxide (NO), 8-hydroxyguanosine (8-OHdG), Spermidine/Spermin N-acetyltransferase (SSAT) levels were analyzed in brain tissues.

    Results

    IR reduced brain ATP levels; however, putrescine treatment reversed this state. Brain NO and 8-OHdG levels, and NF-kB and IL-6 levels increased significantly in the IR group and these elevations were decreased in putrescine administered groups. SSAT levels were higher in the IR-PII group. The lowest levels were observed in the IR-PIII group. 

    Conclusion

    The exogenous putrescine supplementation after cerebral IR creates neuroprotective effects independent of the time of administration; according to conditions such as formation of radicals in the brain, the spread of the inflammation and the need for consumption of energy are considered as a whole.

    Keywords: 8-OHdG, Brain ischemia, IL-6, Nitric oxide, NF-kB, Putrescine, Rat, Spermidine, Spermine-N(1)
  • Zahra Jokar, Saeed Khatamsaz, Hojjatallah Alaei *, Mehrdad Shariati Pages 604-610
    Objective (s)

    The central nucleus of the amygdala (CeA) is one of the most important areas for the morphine reward system. This study investigated the effect of electrical stimulation of CeA on morphine conditioned place preference (CPP) in male rats.  

    Materials and Methods

    After anesthetizing male Wistar rats, both electrode and cannula were implanted into CeA for stimulating (low intensity: 25 μA, and high intensity: 150 μA) and injecting (lidocaine and dopamine D2 receptor antagonist), respectively. Then, CPP induced by effective (5 mg/kg) and ineffective (0.5 mg/kg) doses of morphine was evaluated for five consecutive days (n = 6 / group).

    Results

    The low electrical stimulation intensity of 25 μA suppressed both acquisition and expression phases, but the high intensity of 150 µA attenuated only the expression phase. On the other hand, intra-CeA administration of dopamine D2 receptor antagonist, eticlopride (2 µg/rat), with the effective dose of morphine, decreased CPP. In addition, infusion of lidocaine into the CeA inhibited morphine-induced CPP in both acquisition and expression phases with the effective dose of morphine.

    Conclusion

    Electrical stimulation of the CeA may play an important role in attenuating morphine induced CPP via possible changes in neurotransmitters involved in the reward system such as dopamine (DA) and gamma-aminobutyric acid (GABA).

    Keywords: Addiction, Central nucleus of amygdala, Deep brain stimulation, Dopamine D2 receptor - antagonist, Morphine, Rat
  • Cordelia John, Sumathy Arockiasamy * Pages 611-620
    Objective (s)

    In this study, we tested the hypothesis that sinapic acid (SA), a naturally occurring hydroxycinnamic acid found in vegetables, cereal grains, and oilseed crops with various biological activities suppresses adipogenesis in 3T3-L1 adipocytes by down-regulating adipogenesis transcription factor. 

    Materials and Methods

    3T3-L1 adipocytes were treated with SA and evaluated by Oil Red O staining, triglyceride estimation, lipolysis, and reverse transcription-polymerase chain reaction. 3T3-L1 adipocytes were treated with various concentrations of SA (100 to 1000 μmol) during differentiation. 

    Results

    SA prevented an increase in adipocytes by reducing preadipocyte clonal expansion. ORO staining analyses revealed that SA reduced cytoplasmic lipid droplet accumulation in 3T3-L1 by 57% at the highest concentration of 1000 μmol without affecting cell viability. Furthermore, SA down-regulated the expression of peroxisome proliferator-activated receptor-gamma, CCAAT/enhancer-binding protein alpha, sterol regulatory element-binding protein 1c, and fatty acid synthase. ROS generated during adipogenesis was also attenuated by SA treatment by increasing antioxidant enzymes superoxide dismutase, catalase, and the cellular antioxidant glutathione. SA demonstrated no in vivo toxicity in the Drosophila melanogaster model. 

    Conclusion

    These results suggest that SA exerts anti-oxidant and anti-adipogenic effects and could be used as a functional nutraceutical ingredient in combatting obesity-related diseases.

    Keywords: 3T3-L1 adipocytes, Adipogenesis, Fas, PPARγ, ROS, Sinapic acid
  • Alireza Sarkaki, Khojasteh Hoseinynejad *, Maryam Khombi Shooshtari, Mohammad Rashno Pages 621-628
    Objective (s)

    The goal of the current experiment was to define the efficacy and underlying molecular mechanisms of Ellagic acid (EA) on acute kidney injury (AKI) induced impairment in cognitive and synaptic plasticity in rats. 

    Materials and Methods

    Administration of 8 ml/kg glycerol (intramuscular) was used to establish the AKI model. Injured animals were treated by EA (25, 50, and 100 mg/kg, daily, gavage) for 14 consecutive days. To approve the renal injuries and the effects of EA on AKI, creatinine values in serum and urea nitrogen (BUN) values in blood were measured. Cognitive performance was investigated using the Morris water maze test. In vivo long-term potentiation (LTP) was recorded from the hippocampus. Then, the level of IL-10β and TNF-α levels were measured using ELISA kits. The integrity index of the Blood-brain barrier (BBB) was assessed by extravasation of Evans blue dye into the brain.

    Results

    Glycerol injection increased blood urea nitrogen (BUN) and serum creatinine (Scr) levels significantly in the AKI group, and EA treatment resulted in a significant reduction in BUN levels in all concentration groups. Also, a significant reduction in the cerebral EBD concentrations was demonstrated in EA treatment rats. Moreover, the indexes of brain electrophysiology, spatial learning, and memory were improved in the EA administrated group compared with the AKI rats. 

    Conclusion

    The current experiment demonstrated the efficacy of EA in hippocampal complication and cognitive dysfunction secondary to AKI via alleviating the inflammation.

    Keywords: AKI, Ellagic acid, Memory, Rat, Synaptic plasticity
  • Yangyang Yu *, Dongxu Lin, Zhenyu Liu, Ran Fang, Siman Zheng, Yongxian Cheng, Zhong Huang, Chun Wai Ng, Hang Yung Alaster Lau Pages 629-634
    Objective (s)

    Mast cells are important immune cells that primarily localize in the interface between the host and external environment, and protect us from pathogen infection. However, they are also involved in the pathology of allergic diseases such as asthma and atopic dermatitis. A novel S phase kinase-associated protein 1 (SKP1) inhibitor 6-O-angeloylplenolin (6-OAP), was studied with its potential ability to alleviate the anti-IgE-induced inflammatory responses of primary human cultured mast cells (HCMCs) and LAD2 cell line. 

    Materials and Methods

    We isolated the HCMCs from the buffy coat of voluntary blood donors. The effects of 6-OAP on mast cell activation were evaluated by measuring degranulation, cytokine release, migration, calcium influx, and ERK phosphorylation using spectro-fluorescence assay, multiplex cytometric bead assay/ELISA, migration assay, Fluo-4 calcium flux assay, and western blot, respectively. 

    Results

    It was found that 6-OAP exerted anti-inflammatory effects on human mast cells by dose-dependently suppressing the anti-IgE-mediated degranulation and release of cytokines such as proinflammatory cytokines (IL-8 and TNF-α), growth factors (GM-CSF, VEGF, and FGF), and chemokines (CCL2 and CCL3) in HCMC and LAD2 cells. It also suppressed the migration of immature HCMCs induced by CXCL12. Moreover, the process of calcium influx and ERK phosphorylation in activated HCMC cells were inhibited by 6-OAP administration. 

    Conclusion

    Our results showed that 6-OAP inhibited anti-IgE-induced inflammatory responses of human mast cells via suppressing calcium influx and ERK phosphorylation.

    Keywords: 6-O-angeloylplenolin, Allergy, Inflammation, Mast cell, SKP1 inhibitor
  • Xiaolu Xu, Yue-Heng Li, Zhengyan Yang *, Zhi Zhou Pages 635-642
    Objective (s)

    This study aimed to investigate the function of transient receptor potential vanilloid 1 (TRPV1) in regulating periodontal lesions. In addition, we explored the underlying mechanism of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway.

    Materials and Methods

    Lipopolysaccharide (LPS) stimulation of human periodontal ligament cells (HPDLCs) was used to construct a periodontitis cell model, and experimental periodontitis (EP) rats were established by ligation. The mechanism by which TRPV1 regulates periodontitis was further verified by injecting the TRPV1 agonist capsaicin (CPS) and antagonist capsazepine (CPZ) into the gingiva of rats; the alveolar bone losses in each group were measured by stereomicroscopy. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting (WB) were used to research the expression of TRPV1 and proinflammatory cytokines, and WB was performed to test the phosphorylation of PI3K and AKT.

    Results

    In vitro experiments showed that LPS induced the upregulation of TRPV1 and proinflammatory cytokines and promoted the phosphorylation of PI3K and AKT proteins in HPDLCs, which was consistent with their expression in the rat periodontitis model. Moreover, in vivo studies indicated that CPZ had anti-inflammatory effects through the PI3K/AKT pathway and inhibited bone loss induced by periodontal ligation in rats, while CPS had the opposite effect.

    Conclusion

    TRPV1 was involved in the process of alveolar bone defects and the inflammatory response in rats with periodontitis induced by ligation. Its mechanism might be related to the phosphorylation of related proteins in the PI3K/AKT signaling pathway.

    Keywords: alveolar bone loss, Cytokines, Periodontitis, PI3K, Akt, TRPV1
  • Seyedeh Sara Hashemi, Sahar Janfeshan, Zeinab Karimi * Pages 643-651
    Objective (s)

    Acute lung injury (ALI) is a common complication of distant organ dysfunction induced by acute kidney injury (AKI). Toll-like receptors (TLRs) have a critical role in progression of AKI. The main goal of this study was to determine whether lung gene expression of TLR2 and TLR4 change by ischemic (renal bilateral ischemic-reperfusion; BIR) and uremic (bilateral nephrectomy; BNX) AKI.

    Materials and Methods

    Forty male rats were divided into five groups. Two kidneys were removed in BNX, and renal pedicles were clamped in BIR for 45 min. The kidney and lung tissue, and blood samples were collected and saved after 24 hr in all groups. The bone marrow mesenchymal stem cells were immediately injected (1×106,IV) into the treated groups. The expression of TLR2, TLR4, TNF-α, and VEGF was checked by RT-PCR in the tissue samples. MDA level, SOD, and CAT activity were evaluated in the tissue samples.

    Results

    Structural disturbance of ALI was detected as alveolar hemorrhage and vascular congestion after BIR and BNX.  Lung TLR2 and TLR4 but not TNF-α and VEGF up-regulated in these groups. Oxidative stress stabilized after the BIR and BNX in the tissue samples. BMSCs reduce the expression of TLR2 and TLR4 and oxidative stress in the treated groups. 

    Conclusion

    Acutely gathering systemic mediators after renal ischemic or uremic injury induce ALI through overexpression of TLR2 and TLR4 and oxidative stress. Therefore, the Lung protective effect of BMSCs may be related to modulation of TLR2 and TLR4 and oxidative stress in the kidney and lung tissue.

    Keywords: Acute lung injury, Acute kidney injury, bone marrow, Inflammation, Mesenchymal stem cell, Oxidative stress, Pattern recognition receptors
  • Anyun Mao, Qinghong Qin, Weiping Yang, Changyuan Wei * Pages 652-658
    Objective (s)

    This study aimed to verify whether curcumol combined with paclitaxel exerted synergistic antiproliferative and proapoptotic effects in MDA-MB-231 mammary cancer cells.

    Materials and Methods

    The effects of different concentrations of CC, PTX, and their combination on the proliferation of MDA-MB-231 mammary cancer cells were determined by CCK-8 laboratory tests. Combination index (CI) was calculated using CompuSyn software. Colony formation assays, Hoechst 33258 immunofluorescence staining, and flow cytometry were carried out to observe proliferation and apoptosis in each group. The protein expression of PCNA, Bcl-2, Bax, ZBTB7A, p-p65, and NF-ƙB p65 was detected by western blotting. The xenograft tumor volume and body mass of nude mice were measured. Immunohistochemistry was used to detect the expression of PCNA , NF-B p65 and ZBTB7A. TUNEL and DAPI staining were used to detect the apoptosis of tumor cells.

    Results

    Curcumol combined with paclitaxel exerted a significant inhibitory effect on proliferation of MDA-MB-231 cells in the CCK-8 laboratory test. Hoechst 33258 immunofluorescence staining, flow cytometry, TUNEL, and DAPI apoptosis staining demonstrated that cell apoptosis was the highest in the CC+PTX group in vivo and in vitro. Expression of PCNA, Bcl-2, ZBTB7A, p-p65, and NF-B p65 was lowest in the CC+PTX group, while the expression of Bax was highest. The growth of xenograft tumors in the CC+PTX group was most notably suppressed. Immunohistochemistry showed that expression of PCNA, ZBTB7A, and NF-ƙB p65 was the lowest in the CC+PTX group.

    Conclusion

    Curcumol combined with paclitaxel exerted a synergistic antiproliferative and proapoptotic effect on triple-negative breast cancer cells.

    Keywords: Curcumol, NF-ƙB, Paclitaxel, TNBC, ZBTB7A
  • Ren-Ai Xu *, Ping Fang, Zhize Ye, Mingming Han, Jian-Ping Cai, Guoxin Hu Pages 659-663
    Objective (s)

    This study aims to evaluate the catalytic activities of 31 CYP2C19 alleles and their effects on the metabolism of tapentadol in vitro. 

    Materials and Methods

    Insect microsomes expressing the CYP2C19 alleles were incubated with 50–1250 μM tapentadol for 40 min at 37 °C and terminated by cooling to -80 °C, immediately. Tapentadol and N-desmethyl tapentadol were analyzed by a UPLC-MS/MS system. The kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of N-desmethyl tapentadol were determined. 

    Results

    As a result, the intrinsic clearance (Vmax/Km) values of most variants were significantly altered, while CYP2C19.3 and 35FS had no detectable enzyme activity. Only one variant, N277K, showed no significant difference from CYP2C19.1B. Two variants CYP2C19.29 and L16F displayed markedly increased intrinsic clearance values of 302.22% and 199.97%, respectively; whereas 24 variants exhibited significantly decreased relative clearance ranging from 0.32% to 79.15% of CYP2C19.1B. Especially, CYP2C19.2G, 2H, R124Q, and R261W exhibited a drastic decrease in clearance (>80%) compared with wild-type CYP2C19.1B. 

    Conclusion

    As the first study of all aforementioned alleles for tapentadol metabolism, the comprehensive data in vitro may provide novel insights into the allele-specific and substrate-specific activity of CYP2C19.

    Keywords: Cytochrome P450, CYP2C19 variants, Drug metabolism, Genetic polymorphism, Tapentadol