فهرست مطالب

International Journal of Industrial Engineering and Productional Research
Volume:18 Issue: 2, Jun 2007

  • تاریخ انتشار: 1378/08/10
  • تعداد عناوین: 3
|
  • Comparative Harmonic Loss Measurement of Grain Oriented and Non-oriented Magnetic Sheets Using a High Precision Single Sheet Tester
    A. Ghadiri, H. Heydari Page 1
    Local flux may be distorted in many regions of core, although total flux is usually sinusoidal. When attempting to predict the loss distribution in materials operating under localized distorted flux conditions, which occur in machines and transformer cores, it is essential that proper account of the waveform be taken. Moreover for development of new magnetic materials and generation of better magnetic sheets, it is necessary to implement detailed measurement for their property specifications. One of these property specifications is loss under distorted flux conditions. A high precision Single Sheet Tester (SST) was implemented in which the specification of the sample sheet will be measured by software processing of B and H. The finite element method was used for the magnetic field study. The field distribution was calculated inside and outside the sample, in which way the error was obtained. By different section of the winding in exciting coil the field uniformity was improved and finally the implemented system shows error less than 0.6% in measurement of hysterics loss of magnetic sheets. Loss due to distorted flux was measured for different harmonics and in distinct amplitudes and phases. A range of non-oriented and grain oriented materials were tested under distorted flux waveform condition. For non-oriented sheets loss measured about 10% by applying 15% third harmonic to exciting waveform, while this value was about 25% for many of grain oriented sheets. Moreover, based on implemented measurements, harmonic phase affects on loss and makes about 22% error in loss prediction for non-oriented sheets.
  • A Theoretical and Experimental Investigation for a New Reduced & Reliable Life Time Estimation Method of Insulating Materials
    A. Gholami, T.H. Shah, M. Mazandarani Page 2
    The big share of electrical breakdown in electrical devices failure among other factors is caused by multitasking such as electrical insulation, mechanical support, energy dissipation, Energy storage, etc. which brings many attentions to lifetime estimation of said insulation material. Up to now, there was no-general theory had been suggested for lifetime estimation of mentioned insulation material; the main reason of that was the lack of knowledge on interfering mechanisms. This paper is devoted to suggest a new state-of-art lifetime estimation method with the interest to reduce test procedure time consumption. At first briefly, suggested method has been surveyed to bold its advantages and drawbacks. The lifetime of insulating material estimated from our method, which has been named as HAMD, was better than estimated from the other tests and found to show good agreement with the experimental results.
  • The Generalized Wave Model Representation of Singular 2-D Systems
    M. Haji, Ramazanali, M. Shafiee Page 3
    Existence and uniqueness of solution for singular 2-D systems depends on regularity condition. Simple regularity implies regularity and under this assumption, the generalized wave model (GWM) is introduced to cast singular 2-D system of equations as a family of non-singular 1-D models with variable structure.These index dependent models, along with a set of boundary constraint relations, forming the admissible subspace, led to the recursive solution of the GWM.