فهرست مطالب

ژئوفیزیک ایران - سال ششم شماره 3 (پیاپی 14، 1391)
  • سال ششم شماره 3 (پیاپی 14، 1391)
  • تاریخ انتشار: 1391/11/09
  • تعداد عناوین: 10
|
  • جمال الدین بنی عامریان، بهروز اسکوئی، پریسا ایمانی صفحات 1-16
    مشتق های افقی و قائم میدان معمولا در تعیین لبه ها و مرزهای توده های گرانی و مغناطیسی و همچنین درحکم ابزاری مهم در روش های تفسیر و پردازش داده های گرانی و مغناطیسی مورد استفاده قرار می گیرند. به طورکلی مشتق های میدان پتانسیل به دو گروه مشتق های افقی و قائم تقسیم می شوند. مشتق های میدان را می توان به دو روش اندازه گیری مستقیم (هنگام برداشت داده ها) و محاسبه با استفاده از روش های ریاضی به دست آورد. مشتق های میدان فیلترهای بالاگذر (High pass filter) هستند و موجب تقویت دامنه نوفه ها (noise) و بی هنجاری های سطحی می شوند و با افزایش مرتبه مشتق گیری دامنه این طول موج های کوتاه با شدت بیشتری تقویت می شوند، بنابراین مشتق های مرتبه بالا کاربرد چندانی ندارند. بااین حال به جای مشتق های مرتبه بالا می توان از مشتق های مرتبه کسری (fractional order derivative) میدان استفاده کرد. از مشتق های افقی مرتبه کسری میدان می توان به جای انتقال به قطب (Reduction to the pole) داده ها در عرض های پایین استفاده کرد، دراین صورت مشکل ناپایداری داده ها در انتقال به قطب در عرض های پایین، برطرف می شود. در این مقاله روش های محاسبه مشتق های میدان، چگونگی تغییرات آنها با تغییر مرتبه مشتق گیری، استفاده از مشتق های کسری در روش سیگنال تحلیلی و به کارگیری مشتق های افقی مرتبه کسری به جای انتقال به قطب داده ها بررسی می شود. برای ارزیابی اثرات مشتق های مرتبه متفاوت، این روش روی داده های مصنوعی ناشی از مدل های مصنوعی گوناگون اعمال می شود. به این منظور ابتدا با استفاده از مدل سازی به روش پیشرو، برای مدل های مغناطیسی ساده از قبیل دایک نازک و استوانه افقی داده های مصنوعی تولید می شود. در مرحله بعد برای برآورد واقعی تر داده های واقعی، به داده های مصنوعی تولید شده نوفه اضافه می شود. درنهایت این روش روی داده های مغناطیسی هوابردی برداشت شده در منطقه ای واقع در کشور سوئد مورد استفاده قرار می گیرد. با توجه به تحقیقات زمین شناسی صورت گرفته، در این منطقه یک توده گرانیتی با چند شکستگی وجود دارد، که در داخل این شکستگی ها رگه هایی از دیاباز نفوذ کرده است. نتایج به دست آمده نشان می دهد که مشتق های مرتبه کسری و همچنین مشتق های مرتبه منفی میدان را می توان درحکم ابزاری کمکی در تفسیر و پردازش داده ها مورد استفاده قرار داد. همه مراحل محاسباتی با استفاده از برنامه های رایانه ای که با استفاده از نرم افزار مت لب ازسوی نگارندگان نوشته شده است، صورت می گیرد.
    کلیدواژگان: مشتق مرتبه کسری، مشتق قائم، مشتق افقی، سیگنال تحلیلی، واهمامیخت اویلر، میدان پتانسیل
  • فاطمه روستائی، علی غلامی، احمد سدیدخوی صفحات 17-30
    واهمامیخت یکی از مراحل مهم پردازش داده های لرزه ای است که جزو مسئله های بدوضع دسته بندی می شود. حل مسئله های بدوضع بدون اطلاعات اولیه عملا بیهوده است و درستی این اطلاعات در کیفیت جواب نهایی تاثیر بسیاری دارد. نظریه بیز، دیدگاه مناسبی برای وارد کردن اطلاعات اولیه در فرمول بندی مسئله های وارون است. در این مقاله واهمامیخت در چارچوب نظریه بیز فرمول بندی می شود و جواب مسئله به صورت بردار بیشینه کننده توزیع احتمال پسین درنظر گرفته خواهد شد. توزیع احتمال های دنبال سنگین نظیر توزیع لاپلاس و کوشی که منطبق با تنک بودن سری بازتاب زمین هستند درحکم اطلاعات اولیه در حوزه مدل در نظر گرفته می شوند. با عرضه دو تابع پتانسیل جدید و مقایسه آنها با تابع های پتانسیل به کار گرفته شده از قبل، سعی در بهبود پاسخ مسئله و کاهش خطای میانگین مربعات(MSE) داریم. از روش (Iteratively reweighted least squares) IRLS به علت سادگی و همگرایی مناسب، در بهینه سازی تابع هدف استفاده می شود. بررسی عملکرد توزیع های دنبال سنگین متفاوت با استفاده از داده های شبیه سازی شده و داده های واقعی نشان دهنده کیفیت و قدرت تفکیک بسیار زیاد این روش ها در مقایسه با روش واهمامیخت مرسوم وینر است.
    کلیدواژگان: واهمامیخت، نظریه بیز، مسئله های بدوضع، IRLS
  • انصاری، ح.، فاتحی، م. و علمدار، ک صفحات 31-45
    امروزه استفاده از بررسی های مغناطیسی، به خاطر برداشت سریع، در اکتشاف توده های مغناطیسی به شکلی گسترده صورت می گیرد. به همین دلیل، تفسیر داده های مغناطیسی اهمیت خاصی پیدا کرده است. ماهیت دو قطبی میدان مغناطیسی باعث پیچیدگی تفسیر داده ها می شود. تفسیر را می توان شامل: مشخص کردن بی هنجاری و مرز توده سبب شونده، برآورد عمق و مدل سازی توده دانست. هدف این مقاله مرحله اول تفسیر، یعنی مشخص کردن محل توده سبب شونده بی هنجاری مغناطیسی و تعیین مرز دقیق آن است. مشتقات میدان مغناطیسی و روابط وابسته به آن، در برآورد مرز توده های مغناطیسی کاربرد گسترده دارد. در این مقاله، به بررسی مقایسه ای بین صافی های برآورد مرز شامل مشتق افقی، مشتق قائم، سیگنال تحلیلی، زاویه تیلت و کسینوس زاویه تتا پرداخته شده است. برای بررسی و مقایسه کارایی صافی های ذکر شده، از داده های مصنوعی که با استفاده از نرم افزار مدل ویژن به دست آمده اند، استفاده شده است. مقدار بیشینه مشتق افقی روی مرز توده قرار می گیرد، مشتق قائم روی توده مقدار بیشینه و بیرون از آن کمینه مقدار را دارد. مشتق قائم محدوده توده را وسیع تر از مقدار واقعی نشان می دهد که با استفاده از صافی مشتق قائم مراتب بالاتر این مشکل برطرف می شود و از طرف دیگر باعث ایجاد نوفه های مصنوعی می شود. از سیگنال تحلیلی نیز در برآورد مرز توده استفاده می شود که با افزایش عمق توده، از کارایی آن کم می شود. زاویه تیلت که نسبت بین مشتق قائم به مشتق افقی است، روی توده مقدار بیشینه دارد. کسینوس زاویه تتا روی مرز توده مقدار بیشینه را نشان می دهد و به خوبی مرز توده را تعیین می کند. در آخر داده های واقعی محدوده ای واقع در منطقه رباط پشت بادام یزد مورد پردازش قرار گرفته است.
    کلیدواژگان: برآورد مرز، مشتق افقی، مشتق قائم، سیگنال تحلیلی، زاویه تیلت، کسینوس زاویه تتا
  • فرزام یمینی فرد، علی مرادی، مجتبی نقوی صفحات 46-57
    زمین لرزه 25 مهرماه 1388 با بزرگای گشتاوری 3/4 با ترکیب داده های 29 ایستگاه لرزه نگاری محلی و شتاب نگاری در منتهاالیه غربی گسل پارچین در جنوب شرق تهران با مختصات 57/35 درجه عرض جغرافیایی شمالی و 51/51 درجه طول جغرافیایی شرقی و عمق 2±15 کیلومتر تعیین محل شده است. سازوکار کانونی این زمین لرزه با استفاده از قطبش اولین رسید از نوع معکوس با مولفه کوچک امتدادلغز تعیین شده است. حل تانسور ممان این زمین لرزه به روش مدل سازی نگاشت های جابه جایی ثبت شده در شبکه لرزه نگاری ملی نوار پهن ایران نشان دهنده سازوکار معکوس در امتداد شمال غرب -جنوب شرق به موازات گسل پارچین است. عمق سنتروئید این زمین لرزه 2 ± 12 کیلومتر و گشتاور لرزه ای1015 × 1/3 نیوتن متر محاسبه شده است. سازوکار تعیین شده برای این زمین لرزه، شاهد دیگری بر غلبه مولفه سازوکار معکوس در لبه جنوبی البرز و تقویت نظریه تعدیل تغییر شکل در منطقه البرز با تقسیم لغزش روی گسل های امتدادلغز و معکوس است.
    کلیدواژگان: زمین لرزه، سازوکار کانونی، تانسور ممان، گسل پارچین، تهران
  • رضا امامی، مهدی رضاپور صفحات 59-71
    مقیاس بزرگی محلی عمدتا در محدوده بسامدی (sec3-5/0) اندازه گیری می شود، از طرفی بسامد طبیعی اغلب سازه ها در حدود 1 ثانیه است. در نتیجه گستره خسارت چندان با این مقیاس مرتبط نیست، بنابراین به منظور تحلیل مخاطره و مانند آن، تعیین بزرگی محلی برای زلزله های رخ داده در هر منطقه مورد نیاز است. چون مقیاس بزرگی محلی بسیار متاثر از ساختار پوسته و زمین شناسی منطقه است بنابراین باید برای هر منطقه منحنی تضعیف امواج لرزه ای منتشر شده به دست آید. ما از دو روش پارامتری و ناپارامتری برای معکوس سازی و به دست آوردن ضرایب منحنی تضعیف استفاده کردیم. وجود داده زیاد ثبت شده در مرکز لرزه نگاری کشوری، ما را بر آن داشت تا مبادرت به تعیین منحنی تضعیف و مقیاس ML برای البرز مرکزی کنیم. در این تحقیق از حجم عظیمی از داده که شامل 62523 لرزه نگاشت مربوط به 3889 زلزله می شود، استفاده شده است. داده ها مربوط به زمین لرزه هایی است که در محدوده طول جغرافیایی o48 تا o55 درجه شرقی و عرض جغرافیایی o34 تا o38 درجه شمالی در بازه زمانی 02/03/1997 تا 13/03/2011 رخ داده و در شبکه های لرزه نگاری تهران، سمنان و ساری ثبت شده اند. در این تحقیق برای هر شکل موج ثبت شده در لرزه سنج SS-1 که سرعت نگار است لرزه نگاشت ساختگی دستگاه وود-اندرسون تعیین و اطلاعات لازم از جمله بیشینه دامنه استخراج شده است. لازم به ذکر است دامنه های استخراج شده براساس روش اولیه ریشتر، یعنی بیشینه دامنه از خط مبنا تا پیک مولفه های افقی در گروه S و میانگین حسابی آنها برای به دست آوردن مقادیر واسنجی (کالیبراسیون) مورد استفاده قرار گرفت. تابع های تصحیح تجربی به دست آمده از روش های پارامتری و ناپارامتری به ترتیب عبارت اند از:-logA0=0.9819log(r/100)+0.0028(r-100)+3.0-logA0=1.076log(r)+0.0029(r)+0.5580که r فاصله کانونی برحسب کیلومتر و A0 دامنه برحسب میلی متر است. منحنی تضعیف به دست آمده در این تحقیق نشان می دهد که تضعیف امواج لرزه ای در البرز مرکزی نسبت به ناحیه کالیفرنیا بیشتر است. مقدار Q با توجه به مقدار 0029/ 0k = به دست آمده در روش ناپارامتری و استفاده از فرمول باکن و جوینز (1984) و فرض VS= 3.3 km/sec، برای تناوب یک ثانیه حدود 150 به دست آمد. تغییرات زمین ساختی پوسته منطقه بعد از پرکامبرین و فعالیت های آتشفشانی در منطقه را می توان از عوامل اصلی کم بودن مقدار Q برشمرد. تصحیحات ایستگاهی به دست آمده نشان می دهد که ایستگاه انجیلو (ANJ) از شبکه لرزه نگاری سمنان و ایستگاه پرن (PRN) از شبکه لرزه نگاری ساری به ترتیب دارای تصحیحات ایستگاهی 725/0 و 378/0- واحد بزرگی هستند.
    کلیدواژگان: بزرگی محلی (ML)، البرز مرکزی، روش های پارامتری و ناپارامتری
  • بهروز اسکویی، مهرداد دریجانی صفحات 72-82
    از مدل سازی و برگردان دوبعدی داده های مغناطیسی برای تعیین عمق، شکل و ماهیت کانسارهای آهن استفاده می شود. در این مقاله از برنامه رایانه ای MAG2D در محیط مت لب برای مدل سازی و برگردان داده های صحرایی استفاده شده است که بر اساس الگوریتم کمترین مربعات عمل می کند و یک وزن دهی براساس توزیع خودپذیری مغناطیسی با عمق دارد (استوکو و همکاران، 2009). روش ماسک سیگنال برای تمرکز عمل برگردان روی سیگنال بی هنجاری اصلی برای کاهش اثرات نوفه به کار رفته است. در این مقاله با مدل سازی و تکرار فرایند برگردان روی داده های مغناطیسی منطقه شهمیرزاد و استفاده از روش ماسک سیگنال، می توان یک بی هنجاری شیب دار را در محدوده میانی نیم رخ ها به ضخامت تقریبی 10 متر و به طول تقریبی 100 متر که از سطح زمین تا اعماق امتداد یافته است را مشاهده کرد و با توجه به مطالعات زمین شناسی در منطقه می توان به ماهیت هماتیتی این کانسار آهن پی برد.
    کلیدواژگان: الگوریتم کمترین مربعات، ماسک سیگنال، مدل دوبعدی، مدل سازی و برگردان
  • ملیحه سادات کاظمی صفحات 83-93
    پارامتر λ و مدول برشی (μ) دو نمونه از مهم ترین پارامتر های نشانگر سیال و سنگ محسوب می شوند. پارامتر λ (اولین پارامتر لامه) نسبت به سیال موجود در سنگ حساسیت دارد، در صورتی که پارامتر μ به ملاط سنگ حساس تر است. همچنین نسبت λ/μ که یکی از نشانگرهای سیالی است را می توان درحکم شاخصی برای تعیین سنگ شناسی و تشخیص سیال ها به کار برد. برای تعیین پارامترهای کشسان نیاز به اندازه گیری سرعت های امواج تراکمی، برشی و چگالی است. سرعت امواج تراکمی به کمک نگاره های صوتی تعیین می شود. سرعت امواج برشی را می توان از نگاره های صوتی برشی دو قطبی (DSI) به دست آورد. در این تحقیق با استفاده از نگاره های صوتی برشی دو قطبی پارامترهای لامه و نشانگر LMR در سازندهای کنگان و دالان در یک چاه در میدان پارس جنوبی تعیین شد. مقادیر نشانگرهای lr، μr و λ/μ در لایه K4 کمترین مقدار را در مقایسه با سه لایه دیگر دارد. همچنین با استفاده از نشانگر سیالی (λ/μ) و پارامتر حجم گاز در ناحیه مخزنی (که موید حضور گاز است)، میزان گاز در سازندهای کنگان و دالان مورد مقایسه قرار گرفته است. افزایش پارامتر حجم گاز در ناحیه مخزنی با کاهش مقدار نشانگر سیالی همراه است که مقایسه این دو کمیت تایید مناسب تری برای حضور هیدروکربور ها در ناحیه مورد بررسی است.
    کلیدواژگان: پارامترهای لامه، LMR، نگارهDSI، نشانگر سیالی (λ، μ)، سازندهای کنگان و دالان
  • محمود صفر، فرهنگ احمدی گیوی، علیرضا محب الحجه صفحات 94-112
    استفاده از داده های راداری در تشخیص پدیده های جوی با کیفیت زمانی و مکانی مناسب یکی از روش های تصحیح پیش بینی عددی کمیت های جوی است. در این پژوهش با استفاده از سامانه داده گواری مدل عددی ARPS تاثیر داده های راداری بر پیش بینی میان مدت میزان بارش در منطقه تهران و قم مورد بررسی قرار می گیرد. سامانه همدیدی مورد نظر که در روز 31 مارس 2009 مناطق مرکزی و جنوبی کشور را تحت تاثیر قرار داد، ناشی از کم فشار سودانی همراه با اثر شدید پرفشار سیبری بود که موجب بارش قابل توجه در این مناطق از کشور و کمینه بارش در جنوب البرز شرقی شد.
    نتایج نشان دهنده تاثیر داده های رادار در طول زمان اجرای مدل است، ولی تاثیر این داده ها در زمان های پایانی اجرای مدل محسوس تر است. این بدان علت است که آخرین بخش داده های رادار در ساعت UTC 30: 10 وارد مدل شده است، در نتیجه تاثیر این داده ها بر نتایج خروجی مدل در بخش انتهایی بیشتر از ساعت های اولیه ورود داده های راداری است.
    کلیدواژگان: رادار هواشناسی، پیش بینی عددی میزان بارش، مدلARPS، منطقه تهران
  • فروغ کشوری، نور بخش میرزائی، علی نگارستانی صفحات 113-126
    غلظت گاز رادون پس از زمین لرزه بم (5/10/1382، 8/6)، در ایستگاهی واقع در غرب بروات در بازه های زمانی 10 دقیقه ای ثبت شد. برای بررسی ارتباط زمانی بین تغییرات میزان غلظت گاز رادون و وقوع پس لرزه های زمین لرزه بم، تاثیر پارامترهای جوی دما، فشار جوی و رطوبت خاک روی میزان غلظت گاز رادون با استفاده از شبکه عصبی خطی آدالاین و الگوریتم ژنتیک کمینه شد. تجزیه وتحلیل داده های غلظت گاز رادون اندازه گیری شده در بم نشان می دهد که شبکه عصبی آدالاین قادر به شناسایی تغییرات خطی غلظت گاز رادون ناشی از پارامترهای جوی از بی هنجاری های حاصل از پس لرزه ها است.
    کلیدواژگان: زمین لرزه بم، پیش نشانگرهای زمین لرزه، شبکه عصبی، انتشار گاز رادون
  • وحید ملکی، محمد رضا حاتمی، ظاهر حسین شمالی، مهرداد پاکزاد صفحات 127-140
    در این تحقیق با استفاده از شبیه سازی داده های زمان رسید فاز های لرزه ای، نحوه عملکرد روش غیرخطی و خطی شده در مکان یابی زمین لرزه ها و برآورد خطای مکان یابی مورد بررسی قرار می گیرد. شبیه سازی صورت گرفته برای سه گروه زمین لرزه در ناحیه البرز مرکزی شامل ناحیه گسل مشا، ناحیه فیروزکوه و ناحیه قم است. برنامه مورد استفاده بر اساس روش غیر خطی برنامه NonLinLoc (لوماکس و همکاران، 2000) و برنامه مورد استفاده براساس روش های خطی شده، برنامه Hypo71 (لی و لاهر، 1972) است. سه گروه زمین لرزه دارای شرایط متفاوتی از نظر تعداد فاز های خوانده شده برای هر زمین لرزه، پوشش آزیموتی و فاصله ایستگاه ها تا رومرکز هر زمین لرزه هستند. در این تحقیق به منظور بررسی نحوه عملکرد روش های مکان یابی زمین لرزه دو آزمایش صورت می گیرد. آزمایش اول بررسی عملکرد روش های غیر خطی و خطی شده در حضور نوفه به شکل زنگوله ای در زمان رسید ها و خطای ناشی از هندسه ایستگاه است و آزمایش دوم بررسی عملکرد روش های غیر خطی و خطی شده در حالت وجود هم زمان خطا در زمان رسید ها به شکل زنگوله ای و غیرزنگوله ای است. به منظور ایجاد نوفه با توزیع غیر زنگوله ای در داده ها، از مدل سرعتی غیر واقعی (نسبت به آنچه زمین لرزه ها از آن تولید شده اند) استفاده شده است. نتایج حاصل نشان می دهد که روش غیر خطی در تعیین مکان دقیق تر زمین لرزه و همچنین برآورد عدم قطعیت مکان یابی حتی در شرایط نامناسب ایستگاهی بسیار مناسب عمل می کند. همچنین در این تحقیق مشخص شد که استفاده از روش های خطی شده (در این تحقیق برنامه Hypo71) در صورت فراهم نشدن شرایط بهینه شبکه ایستگاهی و مدل سرعتی مورد استفاده خطای برآورد شده از راه برنامه با خطای واقعی همخوانی ندارد و خطای برآورد شده عمدتا کمتر از مقدار واقعی آن گزارش می شود.
    کلیدواژگان: مکان یابی زمین لرزه ها، روش های خطی شده، روش غیر خطی، عدم قطعیت
|
  • Jamaledin Baniamerian, Behrooz Oskooi, Parisa Imani Pages 1-16
    Horizontal and vertical gradients of the potential fields are used routinely to enhance the edge of the magnetic and gravity sources; furthermore, they are used as useful tools in interpreting and processing of magnetic and gravity data. In general, the derivatives of the potential fields are divided into horizontal and vertical derivatives, and they have always been significant tools in interpreting and processing of potential data. The derivatives can be determined in two procedures, direct measuring when the data are recorded, and calculation using mathematical and numerical methods. Many interpreting methods, that estimate the depth, location and the shape of a potential source, are based on using the gradients of potential fields. For example, both analytic signals and Euler Deconvolution methods, that have been widely applied, basically use the potential field derivatives. In these methods, different kinds of first order derivatives or derivatives of other positive integer orders are commonly used. In the basic equations of these methods, it is possible to use the derivatives of fractional orders in place of derivatives of other positive integer orders. Derivatives are high pass filters. They intrinsically amplify any noise and shallow anomalies present in the data. Therefore, using high order derivatives would be less common. Instead of using high order derivatives, one should use fractional order derivatives of the field. Besides, negative order derivatives are applicable in these kinds of methods and equations, and they can be considered as an interesting property of negative order derivation that acts as a low pass filter. In addition, horizontal fractional derivatives can be used instead of reduction to the pole at low latitudes to eliminate the instability of the reduced data. In this paper, the methods of the field gradient calculation, their alternation, and the application of the fractional order derivatives in analytic signals and reduction to the pole were inquired. To study the effects of the derivatives of different orders, the method was applied to synthetic data generated by various magnetic models such as a thin dike, and a horizontal cylinder. In the next stage, to simulate the real cases, the data was contaminated by random noise. To produce the synthetic data, the forward modeling was used. Finally, the method was applied to an aeromagnetic data set acquired over an area in Sweden. According to the geological studies in this region, there exists a granite intrusive body with certain fractures in which Diabase veins have penetrated. The results show that the fractional order derivatives as well as negative order ones are useful in data processing, and they can be considered as the principle of some of interpreting methods. All of the processing steps in this paper have been performed by using the code that we have written in Matlab.
    Keywords: Fractional derivatives, vertical derivatives, horizontal derivatives, analytic signal, Euler deconvolution, potential fields
  • Fateme Roostaee, Ali Gholami, Ahmad Sadidkhouy Pages 17-30
    Deconvolution is a longstanding problem in many areas of signal and image processing with applications in astronomy, remote-sensing imagery, medical imaging, and other fields working with imaging devices. It is also one of the major steps of seismic data processing and is studied in the framework of inverse problem theory. It is an ill-posed problem in the sense that the recovered solution (reflectivity series) is unstable and very sensitive to the presence of noise in the data. It is well known that the solution of an ill-posed problem is practically unusable unless taking into account some prior information about the original solution and the accuracy of such information highly affects the quality of the final regularized solution. Mathematically, usability of the prior information is of great importance. The availability and usability of the prior information are two main concerns in solving inverse problems and hence deconvolution. Here, we introduce and develop some priors (in the category of heavy-tailed priors such as Cauchy and Laplace priors) that favor solutions having isolated spikes. One of the main advantages of such priors is that they have less penalization on large spikes corresponding to the true reflection coefficients while severely penalizing small spikes due to the noise and therefore results in a sparse reflectivity series. We then used the Bayes theory to incorporate the prior information into the formulation of deconvolution problems. Therefore, in this study, deconvolution was formulated in the framework of Bayes theory and the regularized solution of the problem was considered as a maximizer of the posterior probability distribution including the likelihood and the prior terms. In contrast to the conventional Wiener deconvolution which results in a minimum L2-norm solution, the methods presented in this paper recover the minimum structure or simple solutions. Sparse or simple solutions are more consistent with true earth reflectivity series, since the earth reflectivity series is simple in the sense that most of its coefficients are zero. The non-zero coefficients identify and quantify the impedance mismatches between different geological layers that are of great interest to the geophysicist.After formulating the deconvolution as a general cost function which can be convex or non-convex, we study an alternative method of determining its minimizer, as the limit of an Iteratively Re-weighted Least Squares (IRLS) algorithm. The IRLS algorithm benefits from simplicity and is easy to be coded. Furthermore, it is shown that its convergence to a local minimum from any initial guess is guaranteed and the convergence rate is superlinear. The main step of the proposed IRLS finds, for a given diagonal weight matrix Q, the solution of a weighted zero order quadratic regularization where matrix Q is updated at each iteration. Moreover, using different priors about the reflectivity series results in only a simple change of the definition of matrix Q.Numerical experiments with synthetic and field data show that the proposed sparsity-based deconvolutions estimate the reflectivity with good resolution. Therefore, they can be used for accurate delineation of the thin layers in real poststack seismic data. The numerical results also show that the proposed methods perform much better than conventional Wiener deconvolution in the sense of the reconstruction error.
    Keywords: Deconvolution, Bayes theory, ill, posed problems, IRLS
  • Farzam Yaminifard, Ali Moradi, Mojtaba Naghavi Pages 46-57
    Tehran, Iran’s capital with more than 10 million population is located in the southern foothills of the Alborz collision zone. The Alborz active mountain range consists of several sedimentary and volcanic layers, EW trending mountain belt 100-km wide and 600-km long, is bounded by Talesh Mountains to the West and by the Kopet Dagh Mountains to the East. 5±2 mm/yr shortening and 4±2 mm/yr left-lateral strike-slip motion in central Alborz implies a slip partitioning between strike-slip and reverse faults across Alborz. The city is bounded by active faults. Several of these faults have been mapped but their geometry at depth, their seismicity and kinematics are not precisely known. Historical earthquakes are associated with Mosha, Taleqan, Parchin and Garmsar faults, with the largest events on the Garmsar (Ms ~ 7.6) and Taleqan (Ms ~ 7.7) faults during the third and tenth centuries BC, respectively. Obtained information until now reveal that better understanding of the Alborz region needs more detailed studies in longer time intervals. Several questions about faults geometry, associated seismicity, their interactions and the mechanism of deformation in this region are remained unanswered. Considering the weak geological evidence of fault activity in some parts of Tehran, and rare calculated focal mechanisms for large earthquakes, moment tensor solution of small ones can help us with better understanding of fault behavior in this region.Combining the data recorded by 29 local seismic and accelerograph stations, October 17, 2009 Ray Earthquake, Mw 4.3, was located in the westernmost part of the Parchin fault in the south of Bibi Shahrbanoo Mountain, 35.57° latitude, 51.51° longitude and 15 km depth in south-east edge of Tehran mega city. Using first motion data, a reverse mechanism with a small component of the strike-slip motion was determined.Deviatoric moment tensor was inverted by using broadband data recorded by seven Iranian stations from National Seismic Network, INSN. We used ISOLA program (Sokos and Zahradnik, 2008) that is based on the multiple point-source representation and iterative deconvoloution method, similar to Kikuchi and Kanamori (1991) for teleseismic records, but here the full wavefield is considered, and Green functions are calculated by discrete wavenumber method of Bouchon (1981). Doing many tests, we selected the 0.06-0.095 Hz frequency range that resulted in the highest variance reduction. Besides, we examined the centroid-depth range between 5 and 23 km to find the best correlation. To calculate Green functions, we used the velocity model by Abbasi et. al. (2010) for the Southern flank of Alborz. Inversion with different data subsets verified the stability of the solution.The deviatoric moment tensor inversion for this earthquake by waveform modeling shows almost a pure reverse mechanism, 97% DC component, in northwest-southeast direction along Parchin fault and a centroid depth of 11 km. It is another evidence of dominant reverse mechanism in the southern edge of the Alborz region that implies the accommodation of deformation in Alborz by the slip partitioning. The estimated seismic moment for this earthquake was 3.096e15 Newton meter resulting in a 4.3 moment magnitude using Kanamori (1977) relation.
    Keywords: Earthquake, focal mechanism, moment tensor, Parchin fault, Tehran
  • Reza Emami, Mehdi Rezapour Pages 59-71
    The availability of a large amount of the data recorded by the Iranian Seismic Telemetry Network (ISTN) has motivated this study to develop relations for the routine determination of ML scale for Central Alborz region of northern Iran. The ML is commonly used in engineering because it is determined within the frequency range (0.5-3 sec) of interest in most of such applications. For any comprehensive seismic hazard analysis, one needs a calibrated magnitude relationship as well as an earthquake catalog for the study region. It is a well-known fact that the regional geology has a great influence on magnitude relations. Therefore, for each seismic region a specific magnitude relation has to be developed. The ML scale is based on the arithmetic mean of horizontal components of the synthesized Wood–Anderson seismograms. We used both nonparametric and parametric methods for inversion. We used a large dataset of 3886 events including 62031 waveforms which recorded by Tehran, Semnan and Sari seismic networks during 02/03/1997 to 13/03/2011. These seismic networks comprise of 19 three-component stations. We calculated the associated synthesized Wood-Anderson seismogram for each SS-1 waveform which records the velocity. Based on Richter’s method, we used amplitudes which are arithmetic means of those of horizontal components.Richter’s ML formula first developed for southern California and Savage and Anderson introduced a nonparametric least-squares inversion method which has been used by others. In this method, the amplitudes recorded at arbitrary distances are linearly interpolated to yield values for the attenuation curve at some fixed distances. In this study, we used both methods.The resulting equations are -logA0 = 0.9819log(r / 100) + 0.0028(r - 100) + 3.0 and-logA0 = 1.076log(r) + 0.0029(r) + 0.5580 from parametric and non-parametric methods, respectively. Where r is hypocentral in kilometer and A0 is amplitude in millimeter. The two methods yielded very similar results. Unlike the parametric method, the nonparametric one does not impose any a priori assumption of the shape of the attenuation curve on the data and has the potential to detect hinges in the attenuation curve that are caused by structural boundaries such as Moho or geological variations affects on the attenuation curve. Thus the result obtained by nonparametric method was chosen as the final result.Bakun and Joyner (1984) give the following formula for the Q / f ratio: taking an average S-wave crustal velocity of VS = 3.3 km/sec, the k value obtained by the non-parametric method, 0.0029, would imply a Q / f ratio of 150 in Central Alborz, Iran.
    Keywords: Local magnitude (ML), central Alborz, parametric, non, parametric methods
  • Behrooz Oskooi, Mehrdad Darijani Pages 72-82
    Geomagnetism has always been at the forefront among the various branches of geophysics. In geomagnetics, we have different methods for estimating the depths and shapes of the magnetic bodies in data interpretation. One of the essential and significant methods to describe the geological complexity of earth’s crust is modeling of magnetic data by inversion.Modeling and inversion of the total magnetic field and its compliance with the basic principle to minimize the cross-sectional area of the source bodies are described. The software code, with an interactive graphical interface, operates in MATLAB environment. The code of the inversion procedure is based on a least-squares algorithm, according to a criterion of balancing the weight of the data inaccuracies and the compactness of the solution. The interpretation of magnetic data can sometimes involve two steps, calculation of the direct problem (forward modeling) and solution of the inverse problem (inversion). Forward modeling allows one to compute the theoretical response due to the magnetic source bodies, assuming some hypothesis on the shape and the volume of the magnetic body and the susceptibility contrast between the body and the hosting environment. The analytical solutions to these problems are usually given for bodies of simple shape and regular geometry. The inversion procedure considers the observed profile data or gridded data and using an optimization procedure, estimates the distribution of the susceptibility, shape and volume of the buried magnetic bodies. The principle of the compact inversion involves minimizing the area of the source body, which is the same as maximizing its compactness. Since most of the cases we deal with are slightly underdetermined problems, we need to solve the inversion problem using the least-squares method. The method consists of an iterative procedure in which the weighting matrices change in each iteration until a satisfying convergence of the solution is obtained. The input parameters for the inversion procedure are: (1) the maximum number of iterations, (2) the maximum allowed value of the susceptibility contrast, (3) the noise-over-signal ratio (The model resolution is greatly affected by the choice of the parameter of N/S). The choice of the iteration which offers the best fit is driven by the minimum norm between the calculated and experimental data. A quasi-automatic selection of the signal segments that could be considered as carrying information on the targets was proposed (mask signal). We derived the inversion operator on those parts of the signal that we called ‘‘useful signal’’, i.e. the main anomalies.In this study, we provided a method for magnetic data inversion to make 2D susceptibility models of an area with a suitable potential of Iron-ore. We made use of a 2D inversion method to study the magnetic data of Shahmirzad located in Semnan Province in Iran, to evaluate the hematite mineralization in the area. After data acquisition and processing, we applied an automatic 2D inversion to two profiles. This algorithm was based on the physical parameter distribution method. The subsurface beneath the profile was divided into a great number of infinitely long horizontal prisms with unknown susceptibilities. Solving an underdetermined system of equations in MATLAB resulted in a magnetic susceptibility distribution inside the earth which was related to the hematite content of the rocks. Inversion results on the selected profiles have shown some anomaly sources with trending east-west strike.Finally, after the modeling and inversion and applying the mask signal method to two profiles of Shahmirzad magnetic data, the models showed a steep anomaly in this region with an average thickness of 10 m, a depth of approximately 5 to 25 m and 100 m long. This iron-ore contains hematite mineral with a susceptibility of 0.05, located in the middle of the area of study between igneous intrusive masses and the sediments of limestone.
    Keywords: Inversion, least, squares algorithm, mask signal, modeling, 2D model
  • Malihe Sadat Kazemi Pages 83-93
    Lamé parameter (λ) and shear modulus (μ) are two most important parameters in the identification of fluids and reservoir rocks. Lamé parameter (λ) is sensitive to the fluid within the rock fabric whereas μ is sensitive to the rock matrix only. The combination of these attributes allows more accurate separation of the rock and fluid effects in the reservoir.Wilkens et al. (1984) gave ultrasonic velocity values measured in single crystals of quartz and calcite. They reported values of about 44 GPa for the shear modulus of fused quartz, and 31 Gpa for calcite. They also measured λ to be about 8.4 Gpa for quartz and 55 Gpa for calcite. Lee (2005) reports measured values of 44 GPa for the shear modulus of sand, and 38 Gpa for bulk modulus (Lee, 2009), for which the value of Lamé parameter (λ) is 8.7 GPa. Helgerud et al (2009) calculated the shear modulus of gas hydrate to be 3.49 GPa (at 11°C and 1MPa). Goodway (2001) argued that the value of λ/μ was a more sensitive indicator than λ, λρ, Vp/Vs and Poisson's ratio. Goodway demonstrated that how LMR (Lambda-Mu-Rho) analysis could be used to identify gas sands. The gas in the rock does not affect rigidity and it has low values of λρ. The combination of the fluid compressibility along with the mineral properties and grain shapes result in different LMR values. Using petrophysical parameters to scale the results of LMR analysis, 3D seismic volumes can be converted into lithology cubes. Neither λ nor μ are powerful lithologic indicators by themselves, but used in combination can reveal a great deal about lithology. Gray and Andersen (2000) demonstrated that how LMR cross plot analysis could be used for lithology discrimination. Different lithologies can be identified by cross-plots of λρ versus μρ. Perez and Tonn (2007) were analyzed to model the LMR response of various reservoir qualities and fluid fills. LMR response separates shale zones from highly porous sand zones. Shaocheng et al. (2010) analyzed the equivalent isotropic elastic data of natural rocks in order to characterize λ values for common types of crystalline rocks in the Earth's crust and upper mantle. In the λ-ρ and μ-λ plots, the main categories of lithology can be clearly distinguished.In this study, log analyses were used for a well from the South Pars gas field and the analysis of DSI was used to estimate shear wave velocity developed in a relationship with λ, μ and LMR. The reservoir zone of South Pars field consists of Kangan (K1 and K2) and Dalan (K3 and K4) Formations. Compressional and shear wave velocity values were determined for the estimation of Lamé parameters (λ and μ) for the reservoir zone. The crossplots λ/μ were used to identify the gas. The ratio λ/μ and the crossplot difference λρ-μρ provide some information about the presence of the gas in angan and Dalan Formations. The computed average Lamé’s constants, λ and μ parameters in Kangan Formation in K1 are 36.19 Gpa and 31.25 Gpa and are 32.59 Gpa and 27.02 Gpa in K2, respectively. Also the average values of λ and μ in K3 layer are 33.79 Gpa and 29.59 Gpa and 25.32 Gpa and 24.63 Gpa in K4, respectively.
    Keywords: Lamé parameters, LMR, DSI, λ, μ, attribute, Kangan, Dalan Formations
  • Mahmoud Safar, Farhang Ahmadi, Givi, Ali Reza Mohebalhojeh Pages 94-112
    Remote sensing is a maturing discipline that calls for a wide range of specialties and crosses boundaries between traditional scientific and technological disciplines. Its multidisciplinary nature requires its practitioner to have a good basic knowledge in many areas of science and requires interactions with researchers in a wide range of areas such as electromagnetic theory, spectroscopy, applied physics, geology, atmospheric sciences, agronomy, oceanography, plasma physics, electrical engineering, and optical engineering.The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance in understanding the signal returns from dual-polarized, Doppler weather radars.The main advantage of using radars for precipitation estimation is that they can provide measurements over large areas (about 10 000 km2) with fairly high temporal and spatial resolutions. Installing just one guage for each radar spatial sample (150 m resolution in range and one-degree resolution in azimuth) would require more than one-quarter of a million guages over a 150-km radius. These measurements are sent to a central location at the speed of light by “natural” networks. In addition, radars can provide fairly rapid updates of the three-dimensional structure of precipitation.The use of the radar data to detect atmospheric phenomena with suitable spatial and temporal resolutions has become one of the main methods to improve the performance of numerical weather prediction models. The effects of assimilating radar data to the ARPS numerical model on short time rain forecasts were investigated for a region covering parts of Tehran and Qom Provinces. The investigation was carried out for a synoptic system that affected the central and southern regions of Iran on March 31, 2009. The result of the juxtaposition of a Sudanese low and a strong Siberian high, the synoptic system led to remarkable rainfall in the main parts of the region of interest while leaving the southern flanks of Eastern Alborz with little rain.The ARPS numerical model was ran in two different ways: first, with the GFS (Global Forecast System) data in 3-hour time intervals; second, using the same GFS data together with the assimilation of the data of Tehran's meteorological radar. The results of the latter two applications were compared with the actual observed rainfall accumulated over 6-hour and 24-hour intervals on March 31, 2009.The results demonstrated the usefulness of assimilating radar data to improve the rainfall forecast, both quantitatively and qualitatively. The effects of the radar data are felt more strongly at the final hours of the model run. This is due to the fact that the last part of the radar data was assimilated to the model at 10:30 UTC. The usefulness of the radar data assimilation is less felt in the high-altitude parts where the rain forecast critically depends on the particular cloud and the scheme used in convection parameterization. For the same reason, the rainfall forecast error is usually larger in the high-altitude parts of the region.
    Keywords: Weather radar, rain rate numerical forecasting, ARPS model, Tehran
  • Forough Keshvari, Noorbakhsh Mirzaei, Ali Negarestani Pages 113-126
    Temporal variations of radon concentration in soil and groundwater might be one of the few promising precursors for earthquake prediction. In this study, the relation between radon concentration and aftershocks of Bam Earthquake (26/12/2003, Ms=6.8) has been investigated.The radon monitoring station was located at 29N and 58.4E, precisely on Bam Fault where there have been high occurrences of seismic activities. The study was carried out using an active method involving an Alpha Gurad PQR2000, Alpha Pump and relative accessories which is a device capable of accurately measuring radon concentrations every 10 minutes. Air was being pumped from ground to the measuring system with a flux of 1 L/min. Forced air suction was chosen in order to avoid stratification effects, very common for radon, due to its elevated weight. Radon-monitoring sites are usually chosen in the areas where higher concentrations of radon in the surface soil layer can be expected. For this propose, the radon monitoring site was placed exactly on Bam Fault, which was placed between Bam and Baravat Cities. Radon concentration monitoring data was collected in soil at 90 cm depth exposed for a period of 90 days, every 10 minutes. Radon concentration changes are not only controlled by an earthquake, but they are also controlled by meteorological parameters at the radon monitoring site such as rainfall, soil moisture, temperature and atmospheric pressure. Therefore, in order to use radon variations as a reliable earthquake precursor, we must be able to differentiate changes that are due to earthquake from those which are not.In recent years, artificial neural networks have become very powerful, intelligent tools, used widely in ignal processing, pattern recognition and other applications. The main advantages of the method are the earning capability for developing new solutions to problems that are not well defined, an ability to deal with computational complexities, a facility of carrying out quick interpolative reasoning, and finding functional relationships between sets of data.We have used a modified Adaline structure to estimate the temporal variation of radon concentration related to environmental parameters. This enables us to differentiate the changes due to phenomena in the earth such as earthquakes from those of environmental parameters. Radon concentration data obtained from our site and meteorological parameters measured in meteorological station of Bam were processed by the adaptive linear neural network, Adaline. It was indicated that the linear neural network was able to differentiate linear variations of radon concentration caused by the meteorological parameters from those arose from anomaly phenomena due to the aftershocks.
    Keywords: Bam Earthquake, earthquake precursors, neural network, radon emission
  • Vahid Maleki, Mohammad Reza Hatami, Zaher Hossein Shomali, Mehrdad Pakzad Pages 127-140
    A precise earthquake location and location error estimation is a crucial element in many seismological applications such as local earthquake tomography, seismicity and seismic hazard assessment. Location error estimates may also be crucial to establish whether the hypocenter trend of an earthquake sequence really marks the seismogenic structure or simply reflects ill-conditioning of the location process.So far many methods have been introduced to locate earthquakes. Earthquake location methods have undergone many changes by Geiger’s (1912) principles. One of the first programs based on Geiger’s principles is Hypo71 (Lee and Lahr, 1972), which has already been used in many studies. The basic theory of Geiger (1912) is using Taylor series expansion of the travel time function of source to station. In order to simplify the earthquake location problem, Geiger used only the first term of Taylor series expansion that led to a straight-line equation. Therefore, they are known as linearized relationships. Using the linearized relationships results in a decrease in the accuracy of earthquake location due to losing the higher terms of Taylor series; it may lead to failure in determining the location of earthquakes using a suboptimal network, e.g. where earthquakes are located outside the seismic network. Because of the nonlinearity of the earthquake location problem, all of the algorithms and methods based on theses linearized relationships solve the earthquake location equation iteratively. Thurber (1985) showed that when the depth of earthquake is smaller than the closest distance to station, determining the focal depth is not possible in the linearized methods. Furthermore, for using the higher terms of Taylor series, it is necessary to calculate higher degree derivatives, which are very complex, and sometimes impossible, using a three-dimensional velocity model. However, the non-linear earthquake location problem can also be solved directly by a range of probabilistic algorithms (Tarantola and Valet, 1982). Tarantola and Valet (1982) presented a method that determined the location of earthquakes with fully non-linear relationships without any need to calculate the partial derivatives. The basic theory of nonlinear probabilistic method to determine the location of the earthquakes was introduced by Tarantola and Valet (1982) and Tarantola (1987).Reporting a reliable uncertainty for the location of an earthquake is one of the most important parts of earthquake location, so that presenting the epicenter and depth for an earthquake without the uncertainty is completely meaningless. Moreover, knowing the uncertainty of a location is very important in many other studies such as seismicity and tomography. Thus all the methods and algorithms designed to earthquake location; present an uncertainty for the depth and epicenter of the location. Calculation of uncertainty in an entire earthquake location problem, such as Hypo71 (Lee and Lahr, 1972) based on Geiger’s principles and NonLinLoc (Lomax et al., 2000) is by calculation of a covariance matrix. The basic premise in these methods is that theuncertainties of the observed arrival times and their relationship with the predicted travel times are assumed to be Gaussian (bell-shaped). A bell-shaped error in the time of receipt will be achieved only if the error is observed at the time and is calculated from a random and independent model. However, apart from errors that result from picking the seismic phases (in arrival times); the biggest error in an earthquake location is given by the seismic network. Bondar et al. (2004) identified four main network criteria for epicenter accuracy: (1) the number of phases used in per location; (2) the distance to the closest station; (3) the azimuthal gap; and (4) the secondary azimuthal gap.Thus, many studies are done to find optimal conditions for the use of a network station, e.g. Chatelain et al. (1980), Kissling et al. (1988), Gomberg et al. (1990). Based on the relocation of explosions, Bondar et al. (2004) introduced four characteristics for an optimal seismic network to achieve a location within a 95% confidence level and under 5 km error in depth and epicenter: (1) there are 10 or more stations, all within 250 km, (2) an azimuthal gap of less than 110, (3) a secondary azimuthal gap of less than 160, and (4) at least one station within 30 km.Another source of related errors is to use an inappropriate velocity model of the seismic waves to predict the travel times from source to stations.In this work, to investigate the calculation of uncertainty in different location methods, we compared the performances of nonlinear and linear earthquake location methods with synthetic data by simulation of three clusters of earthquakes in Central Alborz region where the location problem was ill-conditioned. Comparisons were made between the non-linear probabilistic algorithm named NonLinLoc and linear location method known as Hypo71. We studied the performance of these algorithms under different suboptimal network conditions including primary and secondary (largest azimuthal gap by removing single station) azimuthal gaps, an inappropriate velocity model, phase-reading error and the distance to the nearest station using various synthetic tests in the same network-geometry conditions of the real earthquake sequences in Mosha, Firuzkuh and Qom regions.We found out that in the suboptimal network conditions, the location error estimates from Hypo71 were, in general, less accurate than NonLinLoc's and NonLinLoc solutions were more reliable. For earthquakes occurred inside a dense seismic network, we concluded that linearized methods produced lower quality location error estimates with no overall bias in the hypocentral coordinates compared to non-linear methods.
    Keywords: Earthquake location, linearized methods, nonlinear method, uncertainty