فهرست مطالب

International Journal of Civil Engineering
Volume:11 Issue: 3, Sep 2013

  • Transaction A: Civil Engineering
  • تاریخ انتشار: 1392/05/05
  • تعداد عناوین: 7
|
  • Ali Kaveh, M. Nikaeen Page 143
    In this research, the Charged System Search (CSS) and Enhanced Charged System Search (ECSS) algorithm are used to obtain the optimum design of irregular grillage systems with different spacing and various boundary conditions. The cross-sectional properties of the beams are selected as the design variables and the weight of structure is used as the objective function. The displacement limitations and permissible stress constraints are employed from LRFD-AISC and are considered in the formulation of the design problem. Furthermore, in obtaining the response of the grillage systems, the effect of warping is also taken into account. The comparison of the results shows that warping changes the beam spacing, and different boundary conditions have substantial effects on the optimum design of irregular grillage systems
    Keywords: Irregular grillage systems, optimization, CSS algorithm, enhanced CSS algorithm, warping effect
  • Haijun Zhou Page 154
    Damping of a full-scale cable with a pair of passive–on magnetorheological (MR) dampers was tested. A cable of 215.58m long with the first mode frequency of 0.658Hz was tensioned horizontally in cable prefabrication factory. Two MR dampers were attached to the cable in an angle in the plane perpendicularly to the cable axis in 5m length from the cable anchorage. The applied voltage level was 0V, 3V, 6V and 9V. The cable was excited manually to a certain amplitude level for the first three modes of vertical vibration. The free decay curves of the cable were then recorded. The damping of the cable was calculated from the measured anti-node vibration amplitude. The damping of the free cable was also tested for reference. It was found that the damping of the cable is still low when MR dampers were no voltage strengthened. However, the damping of the cable increased greatly for the other with MR damper cases compared to free cable. Further study showed that the damping of the cable with MR dampers were strongly depended on applied voltage level and vibration amplitude. There is an optimal damping value when MR damper is voltage strengthened. The dependence of the optimum damping on applied voltage level, vibration amplitude and vibration mode was further analyzed.
    Keywords: Full, scale cable, MR damper, Damping, Voltage, Amplitude
  • Reza Abbasnia, Arash Farsaei Page 160
    Corrosion of reinforcing steel and other embedded metals is the main cause of severe deterioration in reinforced concrete structures which subsequently imposes adverse effects on ultimate and serviceability limit state performance of the whole structure. In this paper, a new corrosion detection method for reinforced concrete beams, based on wavelet analysis is presented. To evaluate the capability and efficiency of the method, a simply supported RC beam was modeled in 3-D taking into account the behaviors of concrete, steel and bond degradation. Deflection profile and mode shapes were extracted numerically and analyzed by wavelet transform. From the findings of the modeling, it can be concluded that this wavelet-based method is capable of detecting corrosion at its earliest stage. It is also concluded that both discrete and continuous wavelet transforms can be used and mother wavelet type has no significant effect on the results.
    Keywords: Wavelet transform, Damage identification, Non destructive test
  • Amir Tarighat Page 170
    Concrete bridge deck damage detection by measurement and monitoring variables related to vibration signatures is one of the main tasks of any Bridge Health Monitoring System (BHMS). Generally damage puts some detectable/discoverable signs in the parameters of bridge vibration behavior. However, differences between frequency and mode shape before and after damage are not remarkable as vibration signatures. Therefore most of the introduced methods of damage detection cannot be used practically. Among many methods it seems that models based on artificial intelligence which apply soft computing methods are more attractive for specific structures. In this paper an Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to detect the damage location in a concrete bridge deck modeled by finite element method. Some damage scenarios are simulated in different locations of the deck and accelerations as representatives of response at some specific points are calculated. Excitement is done by applying an impact load at the center of the deck. In the proposed ANFIS damage detection model accelerations are inputs and location of the damage is output. Trained model by simulated data can show the location of the damage very well with a few training data and scenarios which are not used in training stage. This system is capable to be included in real-time damage detection systems as well.
    Keywords: Damage detection, finite element method, adaptive neuro, fuzzy inference system, simulated damage scenarios
  • Majid Mohamamdi, R. M. Ghazimahalled Page 182
    A new type of infilled frame has been recently proposed. It has a frictional sliding fuse, horizontally installed at the mid-height of the infill. It has already shown that such infilled frames have higher ductility, strength and damping ratio as well as more enhanced hysteresis cycles, compared with regular infilled frames. This experimental paper is focused on the influence of gravitational load on the behaviour of the fused infill panel. Furthermore, a repairing method in which damaged specimens are repaired by grout plasters is also studied. The results show that the gravitational load, applied to the surrounding frame of the infill for the dead or live loads, arises the ultimate strength of the fused infill specimens. It is also shown that repairing the failed specimen by grout was so efficient that the repaired specimen had greater strength than the original one. However, top gap, between the infill and the top beam of the enclosing frame should be absolutely avoided, because it decays the ultimate strength.
    Keywords: Steel frame, Ductility, Gravitational Load, Retrofitting, Damping, Imperfection
  • Mohammad Hassan Sebt, Mohammad Hossein Fazel Zarandi, Yagub Alipouri Page 189
    Resource-Constrained Project Scheduling Problem (RCPSP) is one of the most popular problems in the scheduling phase of any project. This paper tackles the RCPSP in which activity durations can vary within their certain ranges such as RCPSP with variable activity durations. In this paper, we have attempted to find the most suitable hybridization of GA variants to solve the mentioned problem. For this reason, three GA variants (Standard GA, Stud GA and Jumping Gene) were utilized for first GA, and two GA variants (Standard GA, Stud GA) for the second one, and their hybridizations were compared. For this purpose, several comparisons of the following hybridizations of GAs are performed: Standard-Standard GA, Standard-Stud GA, Stud-Standard GA, Stud-Stud GA, Jumping Gene-Standard GA, and Jumping Gene-Stud GA. Simulation results show that implementing Stud-Stud GA hybridization to solve this problem will cause convergence on the minimum project makespan, faster and more accurate than other hybrids. The robustness of the Stud GA in solving the well-known benchmarking RCPSP problems with deterministic activity durations is also analyzed.
    Keywords: Project Scheduling, RCPSP with Variable Activity Durations, Standard GA, Stud GA, Jumping Gene
  • Masoud Salamatian, Amir Reza Zarrati, S. Amin Zokaei, Mojtaba Karimaee Page 199
    The efficiency of a collar in reducing the scour depth around circular and rectangular piers is studied at different flow intensities (ratio of upstream shear stress to sediment critical shear stress). Rectangular Piers aligned with the flow as well as skewed at 5º, 10º, 20º were examined. Previous studies had shown that with collar the equilibrium time of scouring increases considerably. To reduce the time of experiments low density sediment was used as the bed materials. Comparison between test results and available results with natural sediment showed that, though the relative equilibrium depths were approximately similar, the time to reach equilibrium condition diminished to less than 10 hours with low density sediment. Experimental results for circular and aligned rectangular pier showed that at u*/u*c=0.95 to 0.75 the collar could reduce the maximum scour hole from about 20% to 60% respectively. In rectangular pier, by increasing the skew angle and/or the flow intensity, the efficiency of collar decreased.
    Keywords: Scour, bridge pier, collar, flow intensity, low density sediment, time development