فهرست مطالب

نشریه پژوهش های اقلیم شناسی
پیاپی 5-6 (بهار و تابستان 1390)

  • تاریخ انتشار: 1390/10/11
  • تعداد عناوین: 8
|
  • قاسم عزیزی، محمود داودی، ایمان روستا صفحه 3
    آگاهی از زمان و مکان مناسب کاشت، داشت و برداشت محصولات زراعی مختلف و شناخت شاخص های اقلیمی، این امکان را فراهم می سازد تا از منابع آب و خاک استفاده بهینه شود. در حال حاضر در نتیجه ابداعات جدید پنبه 48% از محصولات نساجی را به خود اختصاص داده است. برآوردها حاکی از آن است که تولید پنبه کشور در حال حاضر، فقط نیمی از نیاز کشور را تامین می کند. به همین دلیل، واردات پنبه هر ساله ارز زیادی را از کشور خارج می کند. هدف از انجام این تحقیق بررسی شرایط محیطی و اقلیمی استان خوزستان در راستای نیاز های پنبه می باشد تا بتوان وجود یا عدم وجود پتانسیل کشت این محصول مهم را در این استان بررسی کرد. بدین منظور، از 11 عامل لازم برای کشت پنبه استفاده شده و نقشه هر یک از عوامل در محیط GIS تهیه شده است. برای تهیه نقشه های اقلیمی از داده های 6 ایستگاه سینوپتیک (با پراکنش مناسب در سطح استان) استفاده شده است. در نهایت با اجرای پرسشگری در محیط GIS، با استفاده از مدل پیوسته وغیر جبرانی بولین، مناطق مناسب کشت پنبه در پهنه استان خوزستان استخراج و در مرحله بعد برای اولویت بندی مکان های انتخاب شده از مدل تاپسیس استفاده شده است. نتایج تحقیق نشان می دهد که استان خوزستان با دارا بودن حدود 280000 هکتار اراضی مستعد کشت پنبه، می تواند یکی از قطب های پنبه کاری در ایران باشد و در رفع نیازهای داخلی پنبه کمک زیادی نماید.
    کلیدواژگان: پنبه، استان خوزستان، مدل بولین، مدل تاپسیس، GIS
  • غلامعباس فلاح قالهری، جواد خوشحال دستجردی، مجید حبیبی نوخندان صفحه 19
    هدف عمده این تحقیق ارزیابی روند تغییرات پارامترهای آگروکلیمایی موثر بر رشد مرکبات در شمال کشور می باشد. برای این منظور داده های روزانه دمای کمینه، بیشینه، بارش و ساعات آفتابی 6 ایستگاه همدیدی واقع در نوار شمالی کشور از سازمان هواشناسی اخذ و از طریق آنها پارامترهای دیگر نظیر متوسط دما، دامنه دما، درجه روزهای رشد، مجموع واحد های حرارتی آفتابی و مجموع واحدهای حرارتی نوری در مقیاس ماهانه، فصلی و سالانه محاسبه گردید. در مرحله بعد، از آزمون روند من کندال و روش خطی برای محاسبه روند تغییرات پارامترهای آگروکلیمایی ذکر شده در فوق در مقیاس ماهانه، فصلی و سالانه استفاده گردید. نتایج این تحقیق نشان دهنده وجود روند افزایشی معنی دار در دمای کمینه، بیشینه و متوسط، روند کاهشی معنی دار دامنه دما، روند افزایشی معنی دار درجه روزهای رشد، مجموع واحد های حرارتی آفتابی و مجموع واحدهای حرارتی نوری است. متغیر بارش در تعداد معدودی از ایستگاه ها در مقیاس ماهانه دارای روند معنی دار در سطح 5 درصد می باشد و در مقیاس فصلی و سالانه دارای روند معنی داری نمی باشد. نتایج این تحقیق همچنین نشان می دهند روند افزایشی دمای کمینه، بیشینه، مجموع واحدهای حرارتی نوری و حرارتی آفتابی و روند منفی دامنه دما در صورت تداوم تاثیر نامطلوبی بر کیفیت میوه مرکبات خواهد داشت.
    کلیدواژگان: آزمون من کندال، روش خطی، درجه روزهای رشد، مجموع واحدهای حرارتی آفتابی، مجموع واحد های حرارتی نوری
  • عباس رنجبرسعادت آبادی، زهرا قصابی صفحه 39
    آلودگی هوای کلان شهرها یکی از مشکلات اساسی زیست محیطی است. آمار ده ساله (2008-1999) شاخص استاندارد آلودگی هوای تهران نشان می دهد که بیش از 891 روز کیفیت هوای شهر تهران در شرایط ناسالم و بسیار ناسالم قرار داشته است. هرچند که عوامل متعددی در ایجاد آلودگی هوا نقش دارند اما مهمترین عامل کنترل کننده توزیع و پراکنش آلودگی هوا، شرایط جوی حاکم هستند. در این مطالعه ویژگی های همدیدی سامانه های جوی که منجر به رخداد آلودگی های بسیار شدید طی 10 ساله اخیر در شهر تهران گردیده، بررسی شده است. برای این منظور از داده های شاخص استاندارد آلودگی (PSI) هوای تهران و داده های تحلیل نهایی با تفکیک افقی یک درجه استفاده شد. در دوره مورد مطالعه فقط چهار مورد مشاهده شد که آلودگی هوای تهران از نظر غلظت گازها در شرایط بسیار ناسالم (PSI>200) قرار داشته است. نتایج نشان می دهد که الگوهای فشاری برای روزهای با آلودگی بسیار شدید در تهران هر چند در فصول مختلف روی داده است، اما شباهت هایی از نظر نوع سامانه و محل استقرار آنها دیده می شود. در همه موارد مطالعه شده، استقرار سامانه پرفشار بر روی زاگرس و جنوب البرز و کم فشار حرارتی در نواحی شمال البرز همراه با پرارتفاع سطوح میانی جو، شرایط باد آرام و کاهش بسیار شدید عمق لایه مرزی(حدود 50-200 متر) در تهران از ویژگی های مهم این سامانه ها می باشند. همجنین بی هنجاری های مثبت ارتفاعی تراز 1000 هکتوپاسکالی در روی زاگرس و نواحی جنوبی البرز که با تقویت سامانه پرفشار همراهی می شود و بی هنجاری های منفی ارتفاعی تراز 1000 هکتوپاسکالی در شمال البرز و روی دریای خزر شرایط مناسبی برای افزایش پتانسیل آلودگی هوای تهران فراهم می آورد.
    کلیدواژگان: آلودگی شدید هوا، سامانه های جوی، شاخص استاندارد آلودگی، تهران
  • سینا صمدی نقاب، علی محمد خورشید دوست، مجید حبیبی نوخندان، فاطمه زابل عباسی صفحه 57
    بکارگیری روش های جدید در حل معادلات جوی و در اختیار داشتن پیش بینی های اقلیمی با توجه به ماهیت بازه زمانی طولانی مدت آنها، نقش بسیار ارزنده ای در مدیریت های کلان ایفا می نماید. ولیکن در بازه زمانی دراز مدت بدلیل محدودیت جدی در قدرت تفکیک مکانی، قادر به پیش بینی آب و هوای واقعی در مقیاس ایستگاهی و خرد مقیاس نمی باشد. لذا جهت بکارگیری خروجی مدل های اقلیمی تمام کره ای و دستیابی به قدرت تفکیک فضائی کم، روش ریز مقیاس نمائی مورد استفاده قرار گرفته که به دو دسته آماری و دینامیکی و گاها تلفیقی از آن دو تقسیم بندی می گردند. در این میان صحت سنجی داده های ریزمقیاس شده جهت تحلیل پیش بینی های درازمدت بعنوان یکی از پارامترهای اساسی در کسب دقت این گونه مدل ها از اهمیت ویژه ای برخوردار است. در این تحقیق سعی گردیده تا با انتخاب کل منطقه کشور و ابتدا برای 41 ایستگاه منتخب کشور که دارای آمار اقلیمی 41 ساله (2001-1961 میلادی) می باشند، خروجی مدل اقلیمیHadCM3 تحت سناریوی اقلیمی A2 که یکی از محتمل ترین سناریوهای انتشار می باشد، توسط مدلSDSM که قادر است خروجی مدل های گردش عمومی جو را به مقیاس ایستگاهی تبدیل نماید، ریزمقیاس گردد. سپس با استفاده از روش های آماری و بدست آوردن ضرائب وزنی داده های ریزمقیاس شده و داده های پایه را مورد تجزیه و تحلیل قرار داده و واسنجی مناسبی از آنها ارائه گردد. نتایج بیانگر آنست که بین مقادیر ریزمقیاس شده بارش، دمای حداقل و حداکثر و مقادیر واقعی آنها تفاوت معنا داری با خطای بحرانی 05/0 وجود ندارد و بازه اطمینان داده ها مشتمل برمقدار صفر است. لذا بکارگیری داده های ریزمقیاس شده مدل جهت بهینه سازی داده های آینده در مقیاس ایستگاهی می تواند بصورت قابل قبول مورد استفاده قرار گیرد.
    کلیدواژگان: مدل گردش عمومیGCM، ریزمقیاس، سناریوهای اقلیمی، مدل های اقلیمی
  • علی اکبر رسولی، ایمان باباییان، هوشنگ قائمی، پیمان زوار رضا صفحه 69
    در تحقیق حاضر با استفاده از تحلیل مولفه اصلی، الگوهای میانگین فصلی دمای سطح پهنه های آبی منطقه شامل دریاهای خزر، سیاه، مدیترانه، سرخ، عمان، عرب، خلیج فارس و بخش های شمالی اقیانوس هند استخراج گردید و ارتباط بین بارش های فصلی کشورمان با دمای سطح پهنه های آبی در دوره 2009-1980 محاسبه گردید. از طریق آنالیز مولفه های اصلی، 483 متغیر اولیه دمای سطح آب به کمتر از 10 عامل که بیش از 90 درصد واریانس کل داده ها را تبیین می کردند، تقلیل یافتند. نتایج نشان دادند که مهمترین کانون های تغییر در آبهای غرب اقیانوس هند در مجاورت سواحل کشور سومالی، سواحل جنوبی هند، شرق مدیترانه - دریای سیاه و شمال دریای عرب واقع شده اند و اقیانوس هند و دریای عرب اولین و مهمترین کانون تغییر در تمامی فصول سال بوده اند. پس از اقیانوس هند دومین کانون تغییر بر روی دریای مدیترانه واقع شده است. مشخص شد که بخش کمی از تغییرپذیری های فصل بهار (با 9/2 درصد واریانس) مربوط به دریای خزر می باشد. هرچند اقیانوس هند بعنوان مهمترین کانون تغییر در فصل تابستان می باشد، اما نقش دریاهای مدیترانه، سیاه و خزر در این فصل تقویت شده و به بعنوان اولویت دوم ظاهر می شود.
    همبستگی بین مقادیر نرمال شده بارش های فصلی ایران با الگوهای میانگین مولفه اصلی دمای همان فصل نشان می دهند که بالاترین همبستگی های معنی دار مربوط به فصل بهار است، به طوریکه در این فصل تعداد کل ایستگاه های با همبستگی معنی دار 105 ایستگاه از کل 141 ایستگاه می باشد که معادل 75 درصد کل ایستگاه های مورد مطالعه می باشد. میانگین همبستگی های معنی دار در فصول پاییز، زمستان، بهار و تابستان به ترتیب 9/42، 7/42، 1/47 و 1/44 درصد می باشد. بنابراین بخش قابل ملاحظه ای از تغییرپذیری های بارش کشورمان به دمای میانگین سطح پهنه های آبی منطقه وابسته است.
    کلیدواژگان: بارش های فصلی، پهنه های آبی منطقه ای، ERSST، ایران، تحلیل عاملی
  • مجتبی ذوالجودی، سیده مژگان قاضی میرسعید صفحه 93
    پیش بینی وضع دریا و نقش آن در حمل و نقل دریایی، کشتیرانی، شیلات، صیادی و نیز در امور تخصصی بر همگان روشن است. با بهره گیری بهینه از مدلهای مختلف و شناخت از میزان صحت و دقت آنها، می توان گام هایی موثر در جهت تحقق این مهم برداشت. یکی از مدلهایی که مطالعه تحقیقاتی در مورد آن مفید می باشد، مدل SWAN است و برای ارزیابی عملکرد این مدل از نظر اجرایی و علمی، مطالعه در خصوص راستی آزمایی محصولات آن لازم است. در این مطالعه، خروجی ارتفاع و تناوب موج حاصل از اجرای مدل مذکور با داده های شاهد موجود برای بوشهر و عسلویه مورد راستی آزمایی قرار گرفته است. با انجام این تحقیق سعی بر آن است که میزان دقت و صحت خروجی این مدل با مقادیر متناظر موجود از فراسنج های شاهد و کارایی آن در پیش بینی های12، 24، و 48 ساعت و بیشتر مورد بررسی و ارزیابی قرار گیرد.
    در فرایند راستی آزمایی با تشکیل جدول توافقی به دنبال بررسی انطباق داده های اقلیمی شاهد با خروجی مدل برای دو فراسنج ارتفاع و تناوب موج هستیم. بدین منظور درصد صحت مدل را به ازای مقادیر مدل و داده های شاهد در بازه های زمانی T<=2s،s 2s 5 sبرای تناوب و h<=25cm، 25 cm50cmبرای ارتفاع موج به مدت 12، 24، 48، 72 و 99 ساعت در نظر گرفتیم. در این تحقیق همچنین امتیازهای مهارتی مدل برای پیش بینی ارتفاع و تناوب موج محاسبه گردیده اند. میانگین خطای مطلق و نسبی مدل با داده های شاهد برای پیش بینی 24 تا 99 ساعت محاسبه و در جدول11 فقط مقادیر مربوط به 48 ساعت که در مجموع از دقت بالاتری برخوردار بوده اند درج شده است. نمودارهای سری زمانی ارتفاع و تناوب موج مدل ودیدبانی ناشی از بویه ترسیم شده اند. نتایج نهایی از جمع بندی تحلیل ها بدست آمده اند.
    کلیدواژگان: راستی آزمایی، جدول توافقی، فراسنج های اقلیمی
  • علی اکبر متکان، روشنک درویش زاده، امین حسینی اصل، محسن ابراهیمی خوسفی، زهره ابراهیمی خوسفی صفحه 103
    خشکسالی تاثیرات منفی بسیاری روی اقتصاد، محیط زیست و کشاورزی می گذارد و خسارات سنگینی را برای قسمت های مختلف جهان به بار می آورد، لذا تخمین و پیش بینی خشکسالی همواره یک مسئله مهم برای تصمیم گیرندگان و برنامه ریزان بوده است. هدف از این تحقیق پهنه بندی خطر خشکسالی در حوضه شیطور واقع در استان یزد با تلفیق داده های ماهواره ای، محیطی و هواشناسی می باشد. بدین منظور از تصاویر ماهواره ای ALOS (تیر 1388)، نقشه های توپوگرافی مقیاس 25000/1 و آمار بارندگی، دما و تبخیر ایستگاه های هواشناسی استفاده شده است. در ابتدا لایه های اطلاعاتی عوامل موثر بر خشکسالی (شیب، جهت، ارتفاع، دما، بارندگی، تبخیر، کاربری اراضی، تراکم شبکه آبراهه ها و درصد پوشش گیاهی) تهیه و سپس با استفاده از منطق فازی و براساس حساسیت به خشکسالی استاندارد گردید. از روش سلسله مراتبی جهت تعیین وزن هر پارامتر استفاده شد. به منظور تلفیق لایه های مذکور از دو روش شاخص وزنی و اپراتورهای مختلف منطق فازی و به منظور ارزیابی نتایج حاصله از شاخص عمودی خشکسالی اصلاح شده (MPDI) استفاده شده است. نتایج نشان داد که از بین روش های مورد استفاده، روش شاخص وزنی با بالاترین دقت (81/0R2 =) می تواند به منظور پهنه بندی خطر خشکسالی مورد استفاده قرار بگیرد.
    کلیدواژگان: خطر خشکسالی، مناطق خشک، سنجش از دور، GIS، روش های دانش مبنا
  • کاظم جوان، حمید طاهری شهرآئینی، فرزین نصیری صالح، مجید حبیبی نوخندان صفحه 117
    استفاده از پراکنش های مکانی بارش و دما نقش مهمی در افزایش دقت خروجی مدل های هیدرولوژیکی دارند. هدف از این مقاله تهیه پراکنش های مکانی دما و بارش در آینده در حوضه آبریز رودخانه قره سو است. حوضه آبریز مورد مطالعه در شمال غرب کشور و در استان اردبیل قرار دارد. این حوضه آبریز از نظر تولید محصولات کشاورزی در ایران دارای اهمیت بسیار است. در تهیه پراکنش های مکانی بارش و دما از روش های درونیابی شامل روش های وزنی عکس فاصله، توابع پایه شعاعی(RBF)، مکانی چند جمله ای و کریجینگ از نرم افزار ArcGIS استفاده شده است. بدین منظور ابتدا داده های ماهانه بارندگی و دما در حوضه آبریز رودخانه قره سو با استفاده از 10 ایستگاه هواشناسی در سال 2004 تهیه شد، سپس به منظور انتخاب روش مناسب برای تهیه پراکنش های مکانی بارش و دمای حوضه آبریز کارایی روش های زمین آمار مورد بررسی قرار گرفت. با محاسبه شاخص های میانگین خطا و ریشه میانگین مربعات خطا و مقایسه، روش وزنی عکس فاصله مناسب ترین روش برای تهیه پراکنش مکانی دما و روش RBF برای تهیه پراکنش های مکانی بارش در این حوضه شناخته شده است. در صورتیکه با کمک روشی بتوان پراکنش های مکانی بارش و دما در آینده را تهیه کرد، می توان پیش بینی های دبی را با استفاده از مدل های هیدرولوژیکی انجام داد. در این مقاله الگوریتم روشی بیان شده که می توان به کمک آن پراکنش های مکانی بارش و دما در آینده را تهیه کرد. برای پیش بینی پراکنش های مکانی دما و بارش در آینده نیاز به یک مدل پیش بینی کننده متغیرهای آب و هوایی است که در این مقاله از داده های مدل اقلیمی منطقه ای PRECIS استفاده شده است. خروجی داده های مدل PRECIS با قدرت تفکیک 50×50 کیلومتر بر اساس سناریوی B2 از سری سناریوی SERS و برای سال های 2071 تا 2100 است. نتایج پراکنش های مکانی دما در حوضه نشان می دهد که دما در تمامی حوضه آبریز رودخانه قره سو نسبت به دوره پایه بین 2 تا 5 درجه سانتیگراد افزایش می یابد و همچنین نتایج پراکنش های مکانی بارش در حوضه به دلیل افزایش و کاهش در ماه های مختلف سال روند خاصی را تسبت به دوره پایه نشان نمی دهد.
    کلیدواژگان: پیش بینی پراکنش های مکانی بارش و دما، حوضه آبریز رودخانه قره سو، مدل PRECIS، روش های درون یابی
|
  • G. Azizi, M. Davoudi, I. Rousta Page 3
    Introduction
    Between different factors, atmosphere conditions are most important natural factors which affect the agricultural crops production. One can observe these effects as frost, sunstroke, outbreak of pest and etc. At the moment, agriculture is one of the most important sections in the economy of a country. In fact, one can say that economic growth is impossible without agriculture. Agricultural crops growth is widely dependent to the atmosphere conditions. Light, temperature, co2, water and nutrients are controlled by the atmosphere. Cultivation of crops in sites with compatible conditions for them has two results. First, it produces the maximum profit and efficiency for farmers. Second, it causes the least damage to the agricultural resources during the long time. Now, as a result of new inventions, cotton includes 48 percent of loom productions. Assessments indicate that producing of cotton in the country provides only half of the country needs at the present time. Therefore, imports of cotton bring out a lot of money from the country each year. The main objective of this study is assessment of environmental and climatic conditions of Khuzestan province according to the cotton needs in order to investigation of the existence and non-existence of potential of cotton planting as a significant product at this province.
    Material And Methods
    First, beginning and end of cotton cultivation date was determined regarding to the climate of Khuzestan province and necessary condition for cotton, on the basis of 90% possibility. To do so, the daily precipitation and temperature data from synoptic station of Khuzestan province which had long-term data (20 years) were used. Then, the important environmental and climatic conditions of cotton cultivation were identified according to the scientific references. Next, for studying the compatibility rate of each factor, a map was prepared separately in Geographical Information System. So, 11 factors were used for cotton planting and their GIS maps were provided. For providing climatic maps, data from 6 well-scattered synoptic stations were used. Finally, with run of Query at GIS by using eternal Boolean Model, suitable areas for cotton planting across the Khuzestan province were exploited and at the next stage, the Topsis Model was used in order to privileging selected areas.
    Result And Discussion
    According to the analysis, 31 March and end of September and October were determined as the beginning and end of cotton planting date, respectively. From the analysis of the factors which were applied following conclusions were drawn:Suitable degree-day for cotton planting is accessible in whole of the province. Temperature of germination is between 26-28 C in this province and so provides the cotton thermal need in this period. Temperature of flowering is only provided in North-West of province. Also, temperature of harvest month has no limitation for cotton planting. Cloudiness during the planting period is less than 2.5 Octa which indicates the suitability of this factor for cotton planting. Sunshine hours are completely provided, too. Humidity of harvest month is a limitation for cotton planting in the province, since it is only provided in the West of province. Precipitation of harvest month is zero which produces appropriate conditions for cultivation. Slope factor is suitable only in the Central and West of province. All of places in the province have suitable height for cotton planting except some regions in the North and North-East of province.
    Conclusion
    Between the necessary factors for complete the cotton planting period in the Khuzestan province only two factors cause limitation: humidity of harvest month and temperature of germination but other factors are appropriate for cotton planting. The results revealed that Khuzestan province with 280000 hectare of apt lands for cotton planting is one of cotton cultivation poles in Iran and can help to remove the inner needs to cotton. These lands are located in the North-West of province in the Safi Abad and Bostan Townships. Also, the privileging of the selected areas indicated that southern regions are more appropriate for cotton planting in comparison with northern regions. So attention to cultivation of cotton is urgent in this province, regarding to needs of Iran and potencies of Khuzestan province in field of cotton cultivation.
    Keywords: Cotton, Khuzestan Province, Boolean Model, Topsis model, GIS
  • Gh. A. Fallah Ghalhary*, J. Khoashhal, M. Habibi Nokhandan Page 19
    The main aim of this research is the assessment of change trend in agro climatological parameters that influence the growth of citrus in the north of Iran. Thereby the daily data of min and max temperature, sunshine and precipitation for 6 number stations of the area under study provided from Iranian meteorological organization. At the next stage, the other parameters including temperature range, mean temperature, Growing Degree Day (GDD), Heliothermal Units (HTU) and Photothermal Units (PTU) has been calculated in the monthly, seasonal and annually scales. Then, Man Kendal trend test and linear method have been used for trend analysis in the above mentioned scales. The results of this research show the significant positive trend in min, max and mean temperature, GDD, HTU and PTU. The temperature range had significant negative trend. Precipitation has positive trend in 5% level of significant in a few stations in the monthly scale and it hasnt significant trend in the seasonal and annually scales. If the variables such as minimum temperature, max temperature, mean temperature, Heliothermal Units, Photothermal Units and temperature difference continue theirs increased and decreased rations respectively, would have harmful effect in the Citrus growth.
    Keywords: Man Kendal Test, linear method, Growing Degree Day, Heliothermal Units, Photothermal Units (PTU)
  • Ranjbar Saadatabadi A., Ghasabi, Z Page 39
    Intriduction: Air pollution in megacities is influenced by many factors such as the topography, meteorology, industrial growth, transportation systems, and expanding populations. Urban/industrial emissions from the developed world, and increasingly from the megacities of the developing world, change the chemical content of the downwind troposphere in a number of fundamental ways. Atmospheric pollution is becoming an increasingly critical problem to human health and welfare especially in megapolises. In fact, many factors affect air pollution and concentration of pollutants. Variations of meteorological conditions can play a vital role by influencing level of air pollutants. Variations in the physical and dynamic properties of the atmosphere on time scales from hours to days can play a major role in influencing the level of air pollutants. The surface wind field is important for pollution dispersion.Vertical thermal gradients can determine the extent to which pollutants are diffused through the atmospheric column. A large number of studies have conducted on the relationship between air pollution concentrations and meteorological conditions (e.g., Alijani 2004; Adamopoulos et al. 1996; Makra et al. 2007; McGregor and Bamzelis 1995; Davis and Kalkstein 1990b). This article investigates large-scale weather conditions that have caused severe air pollution episodes over Tehran area during the last decade (1999-2008).
    Materials And Methods
    Air pollution episodes in urban areas follow certain pre-determined patterns, being associated with certain local meteorological conditions and emission of primary pollutants. In this article, the synoptic and local scale atmospheric circulation that prevails during air pollution episodes in a megacity, Tehran, is examined for a period of 10 years (1999-2008). This study investigates large-scale weather conditions that caused severe air pollution episodes over Tehran area during the last decade (1999-2008). Using 00UTC of Final analysis data set (FNL), daily meteorological parameters and Pollutant Standard Index (PSI) were investigated to relate synoptic characteristics of pressure patterns to the high levels of air pollutants. The pollutants considered in this study were only in the gaseous form which SPI values were more than 200.
    Results And Discussion
    Four episodes with high pollution concentrations (PSI>200) were occurred in the city in the period and in spite of occurrence in different seasons, their pressure patterns have similar characteristics. High concentrations of air pollution occur exclusively, during dominance of high pressure over Zagros chains and thermal low pressure over the Caspian Sea, accompanied with an anticyclonic ridge in the midlevel atmosphere. Results for the study period have clearly shown that anticyclonic conditions are associated with a higher frequency of severe air pollution episodes than synoptic conditions associated with cyclonic flow. This confirms results from elsewhere, which have shown a close relationship between anticyclonic conditions and high pollution loads (McGregor and Bamzelis, 1995, Kalkstein and Corrigan, 1986; Davis and Gay, 1993) often associated with anticyclonic conditions are weak winds, which limit ventilation and thus transport and dispersion of pollutants away from an area. Although the severe air pollution episodes have occurred in different seasons, the pressure patters of them have similar characteristics. The synoptic situations producing the severe air pollution events are typically anticyclone patterns that dominate over Tehran area with a high frequency. Results for the study period have clearly shown that high concentration of air pollutants occurred exclusively during thermal high pressure periods over Zagros chain and south Alborz chain of mountains and thermal low pressure over Caspian Sea along with an anticyclone-ridge in mid level atmosphere. Although exploratory in nature, study results suggest that a synoptic typing method may offer considerable scope for evaluating air pollution potential. Sometimes the large-scale weather conditions are the dominant influences and at others the local conditions are prevalent, although both of them are always present. As a general rule one can state that during strong synoptic pattern, characterized by strong winds, clouds, and, at times, precipitations, local influences are largely suppressed. However, when winds are weak and the sky is clear, the local effects control the lowest layer of the atmosphere (Landsberg, 1980).
    Conclusion
    This is significant, while there has been a decrease in the pressure gradient over Tehran area and the thermal low and thermal high pressure in the two side of Alborz Mountain certainly it appears air pollution potential in Tehran area. While these situations associated with a well developed ridge in the middle atmosphere, they are conducive to severe air pollutant built up in the atmospheric boundary layer due to suppression of vertical mixing heights and poor ventilation regimes. As on poor ventilation and vertical mixing days have the potential to build to considerable levels. The results show, in the severe pollution episodes of Tehran, the weak surface wind was observed over Tehran and west of the area. Boundary layer height limited to 50-200 meters above the surface. It is likely that such a configuration of calm conditions and atmospheric stability account for high concentrations of pollutants. In conclusion, synoptic and mesoscale weather classification is a useful tool for studying the air pollutant concentration and dispersion in a megacity such as Tehran.
    Keywords: large, scale weather situations, severe air pollution, Pollutant Standard Index, Tehran
  • Sina Samadi Naghab, Ali Mohammad Khorshiddust, Majid Habibi Nokhandan, Fatemeh Zabol Abbasi Page 57
    Introduction
    Iran is located in the south-west of Asia and is in the arid belt of the world and about 60% of the extent of the country is mountainous and the remaining part (1/3) is desert and arid lands. The climate of the country can be divided into three main categories: -Warm temperate, rainy with dry summer in a narrow strip in the north, -Dry, hot desert in the central plateau, -Dry, hot steppe covering the rest of the country. So, it could be so difficult to predict climate change over whole of country. In this case, using new methods for solving weather equations and having climate prediction because of its long term temporal has so many important rolls for massive management. In climate change studies, the global circulation models (GCMs) are usually used to simulate the past and future global climate. Unfortunately, despite the advancement in GCM research and modern computing technology, the most recent generation of general circulation models still have serious problems due to their low spatial resolutions (with the field variables being represented on grid points 300 km apart). So, because of its serious limitation and resolution, using them in long term forecast couldn’t predict actual weather in station scale or small scale and it is important to assess the accuracy and uncertainty of GCMs in various climatic and geographical regions.
    Methodology
    To employ output of Global Climate Models and accesses to good resolution, "Downscaling Methods" are used that are divided in two dynamical and statistical groups and some when syncretistic of them. A thorough evaluation of the current generation of GCMs has only started recently and the evaluation of a rich spectrum of indices on extremes is new. In this, calibrating downscaled data is very important as a main parameter to reach best resolution and for analyzing long term forecast. Two different approaches to downscaling have been employed. It has adopted a methodology that exploits mean inter station correlations to correct the statistics of grid-box means. The method, closely related to block-kriging, is demonstrated to remove the sample size sensitivity of statistics in daily grid-point precipitation. It has adopted a direct downscaling by distance and direction weighted average of point observations. At this filed, SDSM is a Statistical down scaling model that distributed both of these aggregation techniques to the consortium. Several data of selected stations have been started applying to a dataset and coding study area. These datasets will provide a valuable reference for model evaluation simulate predictor variables across selected region. The SDSM model run on selected period and reached amount of precipitation, minimum and Maximum of temperature and their standard deviations. By using statistical methods we could evaluate SDSM outputs to reach the best conclusion and selecting best data. With acceptable results, we could use them for climate prediction over region. Materials: In this paper, at the first we tried to select 41 synoptic stations that have 41 years climate data (1961-2001). These stations distributed to whole country with several climates. These data applied our observation dada. At this method we used third version of the coupled global Hadley Centre Climate Model (HadCM3) Outputs as predictor of method and A2 scenario that is one of the most probable emission scenarios. Then we down scaled them by using SDSM model version4.2 that could downscale general circulation models to station scales. Then by using statistical methods and reaching differential coefficients could analyses downscaled data by base data and present suitable correlation of them.
    Results And Discussion
    Results was shown, there is no significant deference with 0.5 critical errors and correlation of data and accepted at 0.01 significant levels. And there is a good accepted correlation between modeled data and observing minimum and maximum temperature and precipitation data.
    Conclusion
    So, using Downscaled data is acceptable with suitable efficiency to correct future data at station scale. This study should help to fill in the knowledge gap in GCM downscaling research of climate and add an important piece in the global climatic assessment jigsaw puzzle.
    Keywords: Global Circulation Model (GCM), Downscale, Climate scenario, Climate Models
  • Ali Akbar Rasuli, Iman Babaeian, Hushang Ghaemi, Peyman Zawar Reza Page 69
    Introduction
    Sea Surface Temperature (SST) is a critical factor in humidity providing and climatic structure of the regions mainly surrounded by oceans and seas. Major amount of humidity resources of Iran provides by regional water bodies of Caspian, Oman, Mediterranean and Black Seas, Persian Gulf and North of Indian Ocean (Alijani 1999: 221). Colder than normal of winter time Caspian Sea surface temperature can increase winter precipitation of South-West and South-Central parts of Caspian Sea, Central and Southern parts of Fars province and all regions of the Khuzestan province. Usually above normal sea surface temperature of Caspian Sea accompany by 20% decrease in winter precipitation in Southern beach of Caspian Sea, North of Fars and all regions of Khuzestan provinces. Warm winter SST of Caspian Sea increases spring precipitation of all weather stations located in the Southern beach of the Caspian Sea (Nazemosadat 2004: 1-14). There are other studies that investigated the impact of sea surface temperature over seasonal precipitation of Iran (Moosavi baygi et. al. 2008: 217-224, Nazemosadat and Shirvani 2005: 1-10, Ghasemi and Khalili 2008: 116-133). Relation between sea surface temperature of Pacific Ocean and precipitation over America, Caribbean Sea countries, Southeast Asia, Australia and Africa have been studied by many scientists (Markovsky and North 2003: 856-877, Wear 1987: 2687-2698, Lim et al 2007: 33-39, Li and Zhang 2008: 237-243, Misra 2003, 2408-2418). Different statistical methods of principal component analysis, canonical correlation and empirical orthogonal function are widely used in recent studies for investigation the relation between sea surface temperature and precipitation. Principal component analysis has been used for analysis the relation between large scale weather patterns and winter droughts over Iran (Ghasemi and Khalili 2008: 116-133). Principal component of Persian Gulf SST are extracted for seasonal sea surface temperature prediction (Nazemosadat 2005:1-10).Methodology and Data: Two types of data including sea surface temperature and precipitation are used in this research. We used ERSST v.2 grided sea surface temperature in the period of 1980-2009 with 2*2 latitude and longitude resolution and seasonal precipitation of 141 synoptic stations of Iran. EERSST data is extended reconstructed sea surface temperature data that have been obtained by using various observed in-situ marine data and remote sensing data from satellite observations. Precipitation data have been extracted from I. R. of Iran Meteorological Organization in the same period of 1980-2009. Area of study for sea surface temperature all water bodies in Middle East including Caspian, Black, Mediterranean, Red and Oman Sea, Persian Gulf and north of Indian Ocean. We applied Principal Component Analysis (PCA) to the seasonal Sea Surface Temperature over six main water bodies around Iran. Number of 483 initial SST parameters has been reduced to less than 10 orthogonal SST modes having around 90% of initial SST variance. Discussion and
    Results
    The results of the monthly and seasonal SST PCAs over the period 1980-2009 are presented first. There are 9 significant center of SST change which is located over southern beach of India, Sudan beach, East of Mediterranean-Black Sea, north of Arabian Sea, west of Mediterranean Sea, Bay of Bengal, Caspian Sea, and Yemen beach. Major part of variances is concentrated in the first seasonal modes, varying from 29.9% in autumn over southern beach of India to 37.2% in winter near water bodies around Sudan. The results are summarized in table 1. Table 1. Principal components of the Sea Surface Temperature of the regional water bodiesPCAs Autumn Winter Spring Summer Change Center Variance Change Center Variance Change Center Variance Change Center VariancePCA1 South of India 29.9 Sudan beach 37.2 Sudan beach 34.8 Yemen beach and Sudan 32.8PCA2 Sudan beach 21.6 East of Med. and Black Seas 13.9 South of India 16.4 East of Med., Black and Caspian 20.7PCA3 East of Med., Black and Caspian 15.4 North of Arabian Sea 12.7 North east of Arabian Sea 13.4 South of India 15.5PCA4 North of Arabian Sea 8.1 Bay of Bengal 9.3 East of Med. And Black Sea 13.1 Sudan beach 10.6PCA5 West of Med. Sea 5.5 South of India 6.4 West of Med. 6.3 North of Arabian Sea 3.1PCA6 Bay of Bengal 4.2 West of Med. 5.8 Caspian Sea 2.9 West of Central African beach 3Regarding to the amount of variance presented in table 1, it is clear that the most of SST variability are concentrated over the water bodies around South of India, Sudan and Yemen beaches. Cluster analysis was used to obtain mean seasonal SST patterns. The first and important seasonal patterns of SST are shown in figure 1. In the figure, circles with + and - signs inside show positive and negative anomalies, respectively. Figure 1 shows that the important mode of SST variability in the autumns is bellow normal temperature in all water bodies under study, especially over Caspian Sea. The first mode of SST in winters accompanies by above normal SST over Caspian, Black and East of Mediterranean Sea and bellow normal SST around Sudan beaches and West of Mediterranean Sea. In the sprigs the first mode of SST variability is characterized by more than normal over all water bodies, but the maximum SST increase is located over Caspian Sea. SST variability in summers is same with spring but amount of positive SST anomaly is significant over Red sea as well as Caspian Sea.Seasonal precipitations of all 141 synoptic stations of Iran were correlated with 6 first SST PCAs of regional water bodies. Numbers of stations with significant precipitation correlation with regional SST patterns are shown in figure 2. Maximum and minimum number of stations with significant correlation was found to be in spring and autumn with 105 and 57 stations out of 141, respectively.
    Conclusion
    The thermodynamic interaction between Sea Surface Temperature and precipitation takes place through the process of SST and humidity exchange at the sea-atmosphere-land interface. In this process, SST plays an important role, particularly in providing atmospheric water content and humidity resources of adjacent continental area. In this paper, seasonal precipitation of 141 synoptic stations of Iran are correlated to the SST PCAs patterns of regional water bodies consists of Caspian, Mediterranean, Black, Red, Oman and Arabian seas, Persian Gulf and north of Indian ocean. We found that the most important center of seasonal SST variability is located over water bodies nearing to Sudan beach and western-north part of Indian Ocean (winter and spring), South of India (autumn), East of Arabian sea, from Yemen to Sudan adjacent water bodies (summer). We found that water bodies near North of Indian Ocean and the Caspian Sea have maximum and minimum role in regional SST variability, among all water bodies around Middle East, respectively. Mean seasonal SST patterns were extracted using cluster analysis. The study reveals that correlation between normalized precipitations between 141 synoptic stations of Iran and mean seasonal SST patterns over regional water bodies are significant in large number of weather stations. Numbers of stations with significant correlation out of 141 are 105, 83, 73 and 58 in spring, summer, winter and autumn, respectively. The results concluded that there are significant high correlations between SST of regional water bodies and precipitation of Iran, so, the major amount of precipitation variability over Iran can be explained by SST anomalies of regional water bodies. Linkage between SST and precipitation presented in this paper can be used as one of important components for seasonal precipitation prediction over Iran stations.
    Keywords: Seasonal precipitation, regional water bodies, ERSST, Principal Component Analysis
  • M. Zoljoodi, M. Ghazimirsaeid Page 93
    Introduction
    Forecasting sea state and its role in marine transportation, shipping, fishery, fishing and professional affairs, is clear. By Using different models and identifying accuracy and precision of them can effectively achieve to these. One of the useful models is SWAN. For evaluating the performance of this model in aspect of executive and scientific both, study on verification of its products is required. In this study, the model outputs of wave height and period in the case of Bushehr and assaluyeh have been verified. With this study it is tried on the accuracy of the model outputs with the corresponding values of Buoy and its performance on predictions 12, 24, 48, 72 and 96 hours studied and assessed.
    Materials And Methods
    In the verification process by using the adaptive table we want to control climatic data with the model output for both wave height and period parameters. For this purpose, threshold values smaller than or equivalent with 2 seconds and smaller than 5 seconds and the values between two mentioned thresholds for wave period also values h<=25cm،, 25 cm50cm for wave height were calculated. Moreover the skill scores of models for predicting wave height and period were calculated. Mean absolute and relative errors with the SWAN model and Buoy data for 48 hours forecasting were calculated and listed in Table. As a sample graphs of the measured wave period and measured height wave by Buoy, with the predicted value of them are plotted. Summarized findings results of the analysis are obtained. By examining the output values from the model and observation data for two regions of Bushehr and Assaluyeh and setting minimum and maximum values for the two parameters, the mention ranges are defined.
    Results And Discussion
    In Assaluyeh region more than 60 percent of cases, the wave height was between 25 cmT >5s and less than 22 percent wave’s frequency was 5s T> s2 and more than 72 percent frequency waves was T>5 s.Values obtained from the skill scores for forecasts 12, 24, 48, 72 and 99 hours shows that the model predictions for the both parameters in 48 hours forecasting in any two regions of Bushehr and Assaluyeh has high accuracy. Proportion Correction (PC) Values shows that more than of 94 percent, predicting the occurrence or non-occurrence waves frequency and more than 86 percent for the wave height performed correctly and in Assaluyeh this value for the wave frequency of more than 64 percent for wave height of more than 88 percent of cases have been performed correctly.Overall results of SWAN model verification on wave height and frequency have acceptable accuracy. The mean absolute errors of observation data show that the model accuracy for wave height is greater than its accuracy for the wave frequency.
    Keywords: verification, discontinues table, climatic parameters
  • Matkan, Ali Akbar.A., Darvishzadeh, Roshanak. B., Hosseiniasl, Amin.C., Ebrahimi Khusfid, Mohsen., Ebrahimi Khusfie, Zohre Page 103
    Drought is a severe dilemma which influences different aspects of mankind’s life. Drought has a negative impact on economy, environment and agricultural sector and cause heavy damage and losses in many parts of the world. Therefore the quantitative estimation and prediction of drought phenomena has become an important issue for policy makers and the scientific community. In the last three decades, remote sensing has provided a useful tool for drought monitoring and a variety of remotely sensed drought indices based on vegetation indices, land surface temperature (LST) and albedo, have been developed. The main objective of this study was drought riskzonation in Sheitoor basin located in Yazd province by using satellite, climatology and environmental data. The data used in this research consist of ALOS (AVNIR) image collected on 18th July 2009, topographical maps (scale: 1/25000), rainfall, temperature and evaporation data which were obtained from meteorological stations.The Sheitoor basin is located in the central part of Iran. It covers a total area of 416 km2. The altitude varies in the region between 1844 and 2989 meters. Average annual rainfall in the study area is 171 mm and average annual temperature is 14 °C. Based on the Dumarten's climate classification method, the climate of study area is cold arid.At first, the ALOS image was processed to obtain the TOA radiance using gains provided in header file. Next the FLAASH algorithm was used to remove the influence of atmosphere and also for conversion of the TOA spectral radiance into ground reflectance. The image was registered to UTM Zone 40 (WGS 84) coordinates using 1:25000 scale digital maps, 17 control points, a polynomial (degree 2) equation and the nearest neighbor resampling method. In the next step, effective parameters on drought including environmental factors (slope, aspect, height, land cover/use, stream density and vegetation fraction) and also climatic data (temperature, rainfall and evaporation) were mapped in GIS environment. The land cover/use map was extracted from satellite data using supervised classification algorithm. Vegetation fraction was also extracted from image using MSAVI1 index. The other parameters such as height, slope and aspect were produced using topographical maps (scale: 1/25000). Data standardization is a basic task in data analysis when several incomparable criteria are involved. To make comparable various data layers, the data layers which effect on drought were standardized using linear fuzzy. For example, drought severity decrease with an increase in altitude and areas having more height are less sensitive to drought, so maximum and minimum altitude were converted to 0 and 1.The AHP method was used to identify the weight of each parameter. Results of weighted layers showed maximum weight for land cover/use parameter due to the human intervention in natural ecosystems. Next, Index overlay and various fuzzy logic operators (Fuzzy Sum, Fuzzy product, Fuzzy OR, Fuzzy and) were used to model the drought risk.Drought change land cover, soil moisture and surface roughness, it also influences the exchange of energy and water between the vegetation, soil and the air. Thus, it may affect surface radiation, heat and water balance by changing surface biophysical factors such as the VI, albedo and LST. In general, with the development of a drought, the NDVI decreases, the albedo and surface temperature increase and the soil moisture decrease, provided that other factors are stable. Combinations of these parameters may provide a useful tool for better understanding of the spatio-temporal patterns of drought. Most of the drought indices presented in the last decades are based on the above-mentioned parameters (especially NDVI, LST and Albedo). The retrieval of the surface albedo and the LST contains uncertainties rooted in the atmospheric correction of satellite data, decomposition of mixed pixel information, bidirectional reflectance distribution function (BRDF) modeling and the spectral remedy by a narrowband to broadband conversion. As a consequence, the final error associated with the extraction and quantifying of drought information would be magnified. On the other hand, calculating these indices need time series of satellite data which increase the time and the cost of processing. In Ghulam et al., 2007, the MPDI as a real time index for drought monitoring based on vegetation fraction and soil moisture is presented. This index only needs one image to be calculated. In the present study, results assessed using MPDI. Final results indicated that the index overlay method can signify high-risk areas more accurately (R2=0.81) than the fuzzy operators.
    Keywords: Drought Risk, Remote Sensing, GIS, Fuzzy Logic, Index Overlay
  • Kazem Javan, Hamid Taheri Shahraiyni, Farzin Nasiri Saleh, Majid Habibi Nokhandan Page 117
    Introduction
    Precipitation and temperature patterns have especial role in the accuracy of hydrologic models. The future patterns of rainfall and temperature can lead to better hydrological predictions. Hence, according to their importance, we try to derive the future rain and temperature patterns of the Gharehsoo River’s watershed. This watershed has been placed in the northwest of Iran in Ardebil province and it has high amount of agriculture productions. Interpolation schemes are utilized in this study to determine the rain and temperature patterns. The utilized software package is ArcGIS software. These interpolation techniques are included of Inverse Distance Weighting (IDW), Global polynomial, Local polynomial, Radial Basis Functions (RBF), ordinary Kriging and simple Kriging. Firstly, we gather the monthly temperature and precipitation data of 10 synoptic stations in 2004. Then, the interpolation schemes are evaluated in order to determine the best temperature and precipitation patterns. The evaluation criteria in this study were Root Mean Square Error (RMSE) and Mean Error (ME). The results of evaluation of different interpolation schemes demonstrated that IDW and RBF method are the best schemes for the spatial modeling of temperature and precipitation patterns, respectively. Using these patterns, it is straightforward to predict runoff using hydrological models. In this paper, a new algorithm is proposed for the prediction of temperature and precipitation patterns for future (2100). To predict temperature and precipitation pattern, it is necessary to utilize of a predictor model to predict the amount of precipitation and temperature. Then the amount of precipitation and temperature are converted to spatial pattern of precipitation and temperature using the developed algorithm in this study. PRECIS model that is a regional climate model was utilized as predictor model in this study.
    Materials And Methods
    a) case study: The studied area (Gharehsoo river watershed) is located in the Northwest of Iran, between longitudes coordinates 47°45’ and 48°42’ E, and between latitude coordinates 37°46’ and 38°34’ N. The Gharehsoo river watershed area is approximately 4100 km2 and plays significant agricultural role in Iran. the mountainous areas have been located in the western and southeastern parts of watershed. Furthermore, there are many pasture and agriculture lands in this watershed. Watershed elevation varies from 1170 m in Gharehsoo river outflow to 4732 m in Sabalan mountainous. The precipitation in the watershed is highly related to the topography and wind in the watershed.. The sea fronts and orographic conditions are the main factors for precipitation in the western and eastern parts of watershed. In the winter, the cold front of Mediterranean Sea, coupled with the local effects of Sabalan Mountains lead to orographic rainfalls. In summer, weather conditions are predominant of Caspian Sea front is the major factor for precipitation in the eastern part of catchment. Autumn and spring rainfalls are the results of interaction between African-Mediterranean and Caspian Sea fronts. b) Data: Temperature and precipitation data are two basic climatologically variables, measured at meteorological stations. Monthly precipitation (mm) and temperature data for 2004 was provided through Iran Meteorological Organization. The number of stations in the watershed and near to watershed was 11 stations. c) PRECIS ModelPRECIS (Providing Regional Climates for Impacts Studies) is a regional modeling system that can be run over any area of the globe on a relatively inexpensive, fast PC to provide regional climate information for impacts studies. The idea of constructing a flexible regional modeling system originated from the growing demand of many countries for regional-scale climate projections. Only a few modeling centers in the world have been developed RCMs (Regional Climate Models) and utilize them to generate projections over specific areas, because it needs high amount of computational effort and time. The Hadley Centre has configured the third-generation of Hadley Centre RCM, named PRECIS that is easy to set up. The past (1961-1990) and future climate SRES B2 scenario (2071-2100) were simulated by PRECIS model at a spatial resolution of 50×50 km for Iran.
    Results And Discussion
    It’s necessary to have a series of precipitation and temperature patterns to produce monthly patterns for future. These series of maps are generated using the precipitation and temperature patterns of 2004. The hyetograph maps are calculated by the ration of total volume of precipitation in January and the area of watershed. The calculated total volume of precipitation in January using the precipitation pattern map was about 490 million m3. The ration of volume and the area of watershed was about 0.117 m. This number shows the average precipitation of January. Similarly, these operations can be performed for the other months of 2004. The unit hyetograph and thermograph maps are generated by dividing the precipitation and temperature patterns in 2004 to their corresponding monthly precipitation and temperature values. The precipitation and temperature data were extracted from the PRECIS model for 2100. The monthly temperature data of 2100 shows an increase of temperature about 2 to 5 degrees in future, but there is no specific trend in precipitation data. If the amount of the monthly temperature and precipitation of 2100 are divided by these amounts in 2004, the amount of B parameters are calculated for precipitation and temperature in different months. Finally, the precipitation and temperature patterns will be obtained by the product value of B parameters and unit hyetograph or thermograph maps in each month, respectively.
    Conclusion
    A new method was developed for reasonable prediction of spatial patterns of precipitation and temperature. This new method uses of the results of a Regional Climate Model (e.g. PRECIS model) coupled with the appropriate spatial modeling techniques (interpolation techniques). The derived precipitation and temperature patterns in 2100 in Gharehsoo River watershed show a reasonable similarity with the topography and the climate of the region, Hence This method can be introduced as an appropriate method for the hydrological forecasts and water resource management.
    Keywords: prediction, spatial distribution of precipitation, spatial distribution of temperature, Gharesoo river watershed, PRECIS, interpolation techniques