فهرست مطالب

International Journal of Civil Engineering
Volume:12 Issue: 1, Mar 2014

  • Transaction A: Civil Engineering
  • تاریخ انتشار: 1392/10/04
  • تعداد عناوین: 11
|
  • A new probabilistic particle swarm optimization algorithm for size optimization of spatial truss structures
    Ali Kaveh, Amir Nasrolahi Pages 1-13
    In this paper, a new enhanced version of the Particle Swarm Optimization (PSO) is presented. An important modification is made by adding probabilistic functions into PSO, and it is named Probabilistic Particle Swarm Optimization (PPSO). Since the variation of the velocity of particles in PSO constitutes its search engine, it should provide two phases of optimization process which are: exploration and exploitation. However, this aim is unachievable due to the lack of balanced particles’ velocity formula in the PSO. The main feature presented in the study is the introduction of a probabilistic scheme for updating the velocity of each particle. The Probabilistic Particle Swarm Optimization (PPSO) formulation thus developed allows us to find the best sequence of the exploration and exploitation phases entailed by the optimization search process. The validity of the present approach is demonstrated by solving three classical sizing optimization problems of spatial truss structures.
    Keywords: Particle swarm optimization, probabilistic particle swarm optimization, spatial truss structures
  • Minimizing the torsional response of asymmetric wall-type systems considering soil-structure interaction
    Hamzeh Shakib, Gholam Reza Atefatdoost Pages 14-24
    An approach was formulated for the nonlinear analysis of three-dimensional dynamic soil-structure interaction (SSI) of asymmetric buildings in time domain in order to evaluate the seismic response behavior of torsionally coupled wall-type buildings. The asymmetric building was idealized as a single-storey three-dimensional system resting on different soil conditions. The soil beneath the superstructure was modeled as nonlinear solid element. As the stiffness of the reinforced concrete flexural wall is a strength dependent parameter, a method for strength distribution among the lateral force resisting elements was considered. The response of soil-structure interaction of the system under the lateral component of El Centro 1940 earthquake record was evaluated and the effect of base flexibility on the response behavior of the system was verified. The results indicated that the base flexibility decreased the torsional response of asymmetric building so that this effect for soft soil was maximum. On the other hand, the torsional effects can be minimized by using a strength distribution, when the centre of both strength CV and rigidity CR is located on the opposite side of the centre of mass CM, and SSI has no effect on this criterion.
    Keywords: Torsional response, Asymmetric wall, type buildings, Nonlinear dynamic soil, structure interaction, Strength distribution, Stiffness eccentricity, Strength eccentricity
  • Optimal assignment of seismic vibration control actuators using genetic algorithm
    Mehdi Abbasi, Amir H. Davaei Markazi Pages 24-31
    An important factor in the design and implementation of structural control strategies is the number and placement of actuators. By employing optimally-located actuators, the effectiveness of control system increases, while with an optimal number of actuators, an acceptable level of performance can be achieved with fewer actuators. The method proposed in this paper, simultaneously determines the number and location of actuators, installed in a building, in an optimal sense. In particular, a genetic algorithm which minimizes a suitably defined structural damage index is introduced and applied to a well-known nonlinear model of a 20-story benchmark building. It is shown in the paper that an equal damage protection, compared to the work of other researchers, can be achieved with fewer numbers of optimally placed actuators. This result can be important from economic point of view. However, the attempt to minimize one performance index has negative effect on the others. To cope with this problem to some extent, the proposed genetic methodology has been modified to be applied in a multi-objective optimization problem.
    Keywords: Structural control, Active control, Optimization, Methodology, Evolutionary algorithms, Benchmarks
  • Friction Damper Dynamic Performance In Seismically Excited Knee Braced Steel Frames
    Amin Gholizad, Parisa Kamrani Moghaddam Pages 32-40
    High performance and reliability of refurbish able knee braced steel frames has been confirmed in previous researches trying to get an optimal design for its configuration. Buckling of diagonal member which affects the hysteretic behavior of KBF under cyclic loadings has not been foreseen in previous evaluations of this system. This deficiency can be improved by utilization of adjustable rotary friction damper device (FDD) as knee element. Diagonal element buckling can be prevented considering a suitable value for FDD sliding threshold moment Mf. Lower values of Mf Lower energy dissipation rate in FDD and this leads to an optimization problem. Nonlinear time history analyses have been performed in addition to lateral cyclic loading analyses to evaluate the response of single story KBF subjected to seismic excitation. Optimal Mf in FDD has been chosen according to these analyses results. Roof displacement and acceleration, base shear and diagonal element’s buckling status have been compared in optimally designed KBF and FDD utilized KBF (FKBF) with different configurations. Nonlinear dynamic analyses have been performed for one, four, eight and twelve story frames under different seismic records with several PGAs. More than 60% displacement response reduction has been earned for the FKBF without considerable increase in base shear.
    Keywords: Knee Braced Steel Frame, Buckling, Friction Damper, Dynamic Analysis
  • SEISMIC PERFORMANCE OF REINFORCED CONCRETE MOMENT RESISTING FRAMES WITH SETBACK BASED ON IRANIAN SEISMIC CODE
    Alireza Habibi, Keyvan Asadi Pages 41-54
    Setback in elevation of a structure is a special irregularity with considerable effect on its seismic performance. This paper addresses multistory Reinforced Concrete (RC) frame buildings, regular and irregular in elevation. Several multistory Reinforced Concrete Moment Resisting Frames (RCMRFs) with different types of setbacks, as well as the regular frames in elevation, are designed according to the provisions of the Iranian national building code and Iranian seismic code for the high ductility class. Inelastic dynamic time-history analysis is performed on all frames subjected to ten input motions. The assessment of the seismic performance is done based on both global and local criteria. Results show that when setback occurs in elevation, the requirements of the life safety level are not satisfied. It is also shown that the elements near the setback experience the maximum damage. Therefore it is necessary to strengthen these elements by appropriate method to satisfy the life safety level of the frames.
    Keywords: RC buildings, Irregularity in elevation, Setbacks, Seismic performance, Time, history analysis, Standard 2800
  • Input Waves for Seismic Design of Power Substation Equipment for Near and Far Iranian Earthquake Records
    Morteza Bastami, Maryam Hajihasani Pages 55-72
    Dynamic analysis of the seismic performance of power substation equipment is time-consuming, expensive and uses responses that are sensitive to ground motion. This research proposes a method to derive input waves for dynamic analysis in place of original records from seismic events in Iran. In this study, a power transformer, current transformer, circuit breaker and disconnect switch are analyzed using fifty records from the far-field and near-field earthquake ground motions. Statistical analysis is done on the maximum acceleration and displacement responses to obtain their pushover curves. Sinusoidal waves were created using the fundamental frequencies of the equipments and PGA of 0.1g through 0.5 g as the amplitude. The results are compared with the original records and show that the proposed input waves provide a reasonable fit for an extensive range of near-field and far-field ground motion results.
    Keywords: Input wave, Seismic analysis, Power substation, Power transformer, Current transformer, Circuit breaker, Disconnect switch
  • PREDICTION METHOD OF DRYING SHRINKAGE CRACK IN REINFORCED CONCRETE WALLS
    Moon, Sung Lee, Tae, Seok Seo Pages 73-81
    Because thin plate reinforced concrete members such as walls and slabs are greatly influenced by the drying shrinkage, cracks can occur in these members due to the restraint of the volume change caused by drying shrinkage. Therefore, the control of cracking due to drying shrinkage is very important in building construction that the thin plate members are frequently used. However, few researches of estimating shrinkage cracking in RC walls have been executed, and the cracking control design of RC walls has been conducted based on the experience rather than the quantitative design method. In this study, the practical cracking prediction method using equivalent bond-loss length Lb was proposed for the quantitative drying shrinkage crack control of RC wall. The calculated values using proposed method were compared with the experimental results from uniaxial restrained shrinkage cracking specimens and the investigative values from the field study. In general, the results of this method were close to those of the experiment and the field study.
    Keywords: drying shrinkage, shrinkage cracking, RC walls, cracking control design, equivalent bond, loss length
  • PERFORMANCE OF EXTERIOR PRECAST CONCRETE BEAM-COLUMN
    R.Vidjeapriya, V. Vasanthalakshmi, K. P. Jaya Pages 82-95
    The present study focuses on the performance of precast concrete beam-column dowel connections subjected to cyclic loading by conducting experiments. In this study, one-third scale model of two types of precast and a monolithic beam-column connection were cast and tested under reverse cyclic loading. The precast connections considered for this study is a beam-column connection where beam is connected to column with corbel using (i) dowel bar and (ii) dowel bar with cleat angle. The experimental results of the precast specimens have been compared with that of the reference monolithic connection. The sub-assemblage specimens have been subjected to reverse cyclic displacement-controlled lateral loading applied at the end of the beam. The performance of the precast connections in terms of the ultimate load carrying capacity, post- elastic strength enhancement factor, load-displacement hysteresis behaviour, moment-rotation hysteresis behaviour, energy dissipation capacity, equivalent viscous damping ratio and ductility factor were compared with that of the monolithic beam-column connection. The monolithic specimen was found to perform better when compared to the precast specimens in terms of strength and energy dissipation. In terms of ductility, the precast specimen using dowel bar and cleat angle showed better behaviour when compared to the reference monolithic specimen.
    Keywords: beam, column connection, precast concrete, cyclic loading, dowel bar, cleat
  • COMBINED EFFECT OF SILICA FUME AND STEEL FIBER ON THE SPLITTING TENSILE STRENGTH OF HIGH-STRENGTH CONCRETE
    Ramadoss Perumal Pages 96-103
    This paper presents the influence of adding steel fibers and incorporation of silica fume on the mechanical properties of high-strength concrete. The variables investigated were steel fiber volume fraction (0 to 1.5%), silica fume replacement (5, 10 and 15%) and water-to-binder ratio (0.25, 0.30, 0.35 and 0.40). The influence of fiber content in terms of fiber reinforcing index on the compressive and splitting tensile strengths of high-strength steel fiber reinforce concrete (HSFRC) is presented. The use of silica fume increased both the compressive and splitting tensile strengths of concrete at 28 days. On the other hand, the addition of crimped steel fiber into high-strength concrete improves splitting tensile strength significantly. Based on the test data, using regression analysis, empirical expression to predict 28-day tensile strength of HSFRC in terms of fiber reinforcing index was developed and the absolute variation and integral absolute error (IAE) obtained was 3.1% and 3.3, respectively. The relationship between splitting tensile and compressive strength of SFRC was reported with regression coefficient (r) = 0.9. The experimental values of previous researchers were compared with the values predicted by the model and found to predict the values quite accurately.
    Keywords: strength concrete, splitting tensile strength, silica fume, steel fiber reinforcing index, high, strength fiber reinforced concrete, modeling
  • BONDING PERFORMANCE OF NYLON TIRE CORED YARNS IN FINE GRAINED CONCRETE
    Mojdeh Zargaran, Nader K. A. Attari, Parisa Teymouri Pages 104-111
    Polymeric yarns for reinforcing cement composites have got great interest in all over the world. In this research the performance of bonding between Nylon tire cord grad yarns, and one kind of cement composite called fine grained concrete was studied. Two kinds of Nylon cord yarns, nylon 6 and 66, with different finesse were selected. The durability of yarns with time in alkaline media was investigated. Meanwhile the effect of usual tire cord coating on bonding performance and alkaline durability of yarns were studied by mechanical testing and SEM images. Then the bonding of these yarns to cement paste and the effects of finesse on bonding performance were investigated by pull out tests. The results show that coating could enhance alkaline durability. Results also show that yarns with higher finesse are more sensitive to alkaline media and their mechanical properties reduced more. SEM images show that in general, alkali damage of Nylon tire cord yarns was not deep and no significant changes were observed on the surface of filaments after exposed to alkali. The bonding of Nylon tire cord to cement composite was suitable and no slippage was observed. The pull out behavior of finer yarns is better than coarse yarns. Meanwhile tire cord coating could enhance bonding of yarns to cement paste.
    Keywords: Nylon tire cord yarns, Pull out, Fine grained concrete, TRC, Cement composites
  • Lateral Behavior of piles with different cross sectional shapes under lateral cyclic loads in granular layered soils
    Pejman Vahabkashi, Alireza Rahai, Abdolazim Amirshahkarami Pages 113-121
    Piles or drilled shafts used in bridge foundation, waterfronts, and high rise buildings are generally subjected to lateral loads. In order to study the effect of concrete pile geometry on the structural behavior in layered soils, several models with different shapes and dimensions for piles and different properties for two soil layers with variable thickness were selected and analyzed using the finite difference method. The performance of piles situated in layered granular soil with different compaction and thicknesses were studied in two cycles of lateral loading and unloading. The applied finite difference procedure is also validated based on experimental and published results. The pile head displacement of different models due to their overall deformation and rotation were calculated under maximum loading. For a comparison of pile head displacement due to their overall deformation and rotation in different models, the "performance index” is defined as the ratio of “displacement due to deformation” to the “total displacement”.
    Keywords: Layered soils, geometric piles, lateral load, cyclic load, Soil, pile interaction