فهرست مطالب

International Journal of Optimization in Civil Engineering
Volume:4 Issue: 4, Autumn 2014

  • تاریخ انتشار: 1393/09/03
  • تعداد عناوین: 7
|
  • A. Afshar, H.R. Zolfaghar Dolabi * Pages 433-450
    Safety risk management has a considerable effect on disproportionate injury rate of construction industry, project cost and both labor and public morale. On the other hand time-cost optimization (TCO) may earn a big profit for project stakeholders. This paper has addressed these issues to present a multi-objective optimization model to simultaneously optimize total time, total cost and overall safety risk (OSR). The present GA-based optimization model possesses significant features of Pareto ranking as selection criterion, elite archiving and adaptive mutation rate. In order to facilitate safety risk assessment in the planning phase, a qualitative activity-based safety risk (QASR) method is also developed. An automated system is codded as an Excel add-in program to facilitate the use of the model for practitioners and researchers. The model has been implemented and verified on a case study successfully. Results indicate that integration of safety risk assessment methods into multi-objective TCO problem improves OSR of nondominated solutions. The robustness of the present optimization model has also been proved by its great ability to prevent genetic drift as well as the improvement in the bicriteria among generations.
    Keywords: construction management, safety, optimization, genetic algorithms, time, cost, safety trade, off, safety risk assessment
  • H. Fathnejat, P. Torkzadeh, E. Salajegheh *, R. Ghiasi Pages 451-472
    Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the MSEBI of structural elements is evaluated using properly trained cascade feed-forward neural network (CFNN). In order to achieve an appropriate artificial neural network (ANN) model for MSEBI evaluation, a set of feed-forward artificial neural networks which are more suitable for non-linear approximation, are trained. All of these neural networks are tested and the results demonstrate that the CFNN model with log-sigmoid hidden layer transfer function is the most suitable ANN model among these selected ANNs. Moreover, to increase damage severity detection accuracy, the optimization process of damage severity detection is carried out by particle swarm optimization (PSO) whose cost function is constructed based on MSEBI. To validate the proposed solution method, two structural examples with different number of members are presented. The results indicate that after determining the damage location, the proposed solution method for damage severity detection leads to significant reduction of computational time compared to finite element method. Furthermore, engaging PSO algorithm by efficient approximation mechanism of finite element (FE) model, maintains the acceptable accuracy of damage severity detection.
    Keywords: damage detection, approximation mechanism, cascade feed, forward neural network, modal strain energy based index, particle swarm optimization
  • A. Kaveh *, V.R. Mahdavi Pages 473-490
    In this paper, optimal design of arch dams is performed under frequency limitations. Colliding Bodies Optimization (CBO), a recently developed meta-heuristic optimization method, which has been successfully applied to several structural problems, is revised and utilized for finding the best feasible shape of arch dams. The formulation of CBO is derived from one-dimensional collisions between bodies, where each agent solution is considered as the massed object or body. The design procedure aims to obtain minimum weight of arch dams subjected to natural frequencies, stability and geometrical limitations. Two arch dam examples from the literature are examined to verify the suitability of the design procedure and to demonstrate the effectiveness and robustness of the CBO in creating optimal design for arch dams. The results of the examples show that CBO is a powerful method for optimal design of arch dams.
    Keywords: colliding bodies optimization, arch dam, optimal design, frequency constraints
  • D. Mesko * Pages 491-508
    During the planning phase of modern, complex, block-structured, large-area located, but still landscape-harmonized health-care buildings, the key is the optimal positioning of the blocks and functions, simultaneously ensuring the most-effective backup-paths for any transportation route failure in the buildings in order to speed up system operation, reduce maintenance costs and especially to improve patient safety and satisfaction. The importance of improving reliability and boundary conditions of the modelling in modern complex health-care building-systems are emphasized. A cost efficient pre-phase solution of mathematical, graph modelling is presented, with introducing link doubling to linearize a two segment, non-linear capacity-cost function. The developed and detailed mathematical graph model can be used as part of the architectural planning workflow. This model allows distinguishing the sharable part from the free part of capacity on a link in case of simultaneously routing multiple protection paths. Link doubling allows finding optimal routing of shared protection paths for failure cases. Two algorithms are proposed for routing of the guaranteed bandwidth pipes with shared protection which provides reliable building structures through thrifty additional resources. It is assumed that a single working path can be protected by one or multiple protection paths, which are partially or fully disjoint from the working one. This approach allows better capacity sharing among protection paths. The main aim of the recommendations is to achieve a reliable, fully operational building even if a failure, a reconditioning or emergency situation happens.
    Keywords: graph optimization, reliable health, care buildings, optimal, positioning
  • B. Mohebi, Gh. Ghodrati Amiri *, M. Taheri Pages 509-524
    This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classification of project location was divided into 4 different types according to the velocity of shear waves in the Iranian Code for Seismic Design. As a result, 8 frame models were considered. The selection and scaling were carried out in 2 stages. In the first stage, the matching with design spectrum was carried out using genetic algorithm in order to achieve the mean of structural response. In the second stage, the matching with average of structural responses were carried out using PSO to achieve 1 or 3 accelerograms with related factors in order to be used in structural analysis.
    Keywords: non, linear analysis, PSO, genetic algorithm, matching range, damage index
  • A. Kaveh *, O. Khadem Hosseini, S. Mohammadi, V. R. Kalat Jari, A. Keyhani Pages 525-547
  • A. Samadi *, H. Arvanaghi Pages 549-560
    Measurement of discharge in open channels is one of the main concerns in hydraulic engineering. The structures used for this aim should be accurate, economical and easy to use. Weirs are among the oldest and most convenient hydraulic structures that have been used in both laboratory and field for flow measurement in open channels. Due to limitations of simple sharp crested weirs, recently compound sharp crested weirs have attracted great attention of civil engineers. In general, use of compound sharp crested weirs can be an appropriate solution when the discharge should be measure accurately with a reasonable sensitivity over a wide range of flows. The aim of this research is three-dimensional simulation of flow on contracted compound arched rectangular sharp crested weirs by using FLUENT software. For multiphase flow simulation, VOF method is used and for simulation of turbulent flow, RNG k-ɛ turbulence model is used and the result of numerical model is compared with experimental data. The results of this study indicate that; FLUENT simulate flow on contracted compound arched rectangular sharp crested weirs with high accuracy and we can use this software for determine the discharge coefficient on contracted compound weirs.
    Keywords: contracted compound weir, discharge coefficient, FLUENT, RNG k, 3D simulation, VOF